
Unity Pro

33002515 02/2017
33
00

25
15

.1
8

www.schneider-electric.com

Unity Pro
Concept Application Converter
User Manual
02/2017

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.
No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Schneider Electric.
All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.
When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.
Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.
Failure to observe this information can result in injury or equipment damage.
© 2017 Schneider Electric. All Rights Reserved.
2 33002515 02/2017

Table of Contents
Safety Information. 7
About the Book . 11

Part I Requirements and conversion 13
Chapter 1 General Description of the Unity Pro Concept Converter 15

General Description. 16
Conversion with the Conversion Wizard . 17

Chapter 2 Requirements . 19
Concept Version . 20
Supported Hardware Platforms . 21
Configuration . 22
System. 23
EFBs . 31
Programming Language SFC . 34
Programming Language LD . 35
Programming Language ST/IL . 47
Programming Language LL984 . 49
Programming Language FBD . 50

Chapter 3 Language Differences. 51
Functions Not Present in Unity . 53
EFB Replaced by Function . 54
FFBs Not Available For All Platforms . 55
INOUT Parameters . 60
Parameter Type Changed . 61
ANY_ARRAY_WORD Parameters. 62
Unique Naming required . 63
Incomplete LD Generation. 64
LD Execution Order Changed . 65
Constants . 69
Indices in ST and IL. 70
Calculate with TIME and REAL . 71
WORD Assignments to BOOL Arrays . 72
Topological Address Overlapping . 73
Substitute %QD by %MF. 74
Structure Alignment Changed . 75
Undefined Output on Disabled EFs . 76
33002515 02/2017 3

Variables at Empty Pins . 78
The set action remains active, even when the associated step
becomes inactive . 79
SFC Section Retains its State When Performing an Online Modification 80
SFCCNTRL Function Block in Unity Behaves Different to Concept . . . 81
Weekday Numbering . 82
System Timer . 83
Initial Values. 84
Macros . 86

Chapter 4 Possible application behavior change 87
General . 88
Concept Behavior. 89
IEC Demands. 90
Unity Behavior . 93
Consequences . 95

Chapter 5 The Conversion Process . 101
Conversion Process . 101

Chapter 6 Conversion Procedure . 103
Exporting a Project from Concept . 104
Importing a Project into Unity Pro . 105
Missing Datatypes at the Beginning of the Import 106
Converting Only Parts of a Concept Application 107
Removing Accidentally Included Concept Macros 108
Initialization Values . 109
If the convertedMomentum application contain more than one XMIT
block. 110

Part II Blocks from Concept to Unity Pro 111
Chapter 7 BYTE_TO_BIT_DFB: Type conversion. 113

Description . 113
Chapter 8 CREADREG: Continuous register reading 117

Description . 118
Mode of Functioning. 121
Parameter description . 122
Modbus Plus Error Codes . 123

Chapter 9 CWRITREG: Continuous register writing 125
Description . 126
Mode of Functioning. 129
Parameter description . 130
4 33002515 02/2017

Chapter 10 DINT_AS_WORD_DFB: Type conversion 131
Description. 131

Chapter 11 DIOSTAT: Module function status (DIO) 133
Description. 133

Chapter 12 GET_TOD: Reading the hardware clock (Time Of Day) . 135
Description. 135

Chapter 13 LIMIT_IND_DFB: Limit with indicator 139
Description. 139

Chapter 14 LOOKUP_TABLE1_DFB: Traverse progression with 1st
degree interpolation . 143
Description. 144
Detailed description . 146

Chapter 15 PLCSTAT: PLC function status 149
Description. 150
Derived Data Types. 152
PLC status (PLC_STAT) . 154
RIO status (RIO_STAT) for Quantum . 156
DIO status (DIO_STAT) . 158

Chapter 16 READREG: Read register . 165
Description. 166
Mode of Functioning . 169
Parameter description . 170

Chapter 17 RIOSTAT: Module function status (RIO) 173
Description. 173

Chapter 18 SET_TOD: Setting the hardware clock (Time Of Day) . . 177
Description. 177

Chapter 19 WORD_AS_BYTE_DFB: Type conversion 181
Description. 181

Chapter 20 WORD_TO_BIT_DFB: Type conversion. 183
Description. 183

Chapter 21 WRITEREG: Write register . 187
Description. 188
Mode of Functioning . 191
Parameter description . 192
33002515 02/2017 5

Appendices . 195
Appendix A FAQ Build Errors . 197

General . 198
Object Link Creation Error . 199
Object Must be Connected to a Successor . 200
Link Together with Variable isn't Allowed. 202
Data Type 'xxxx' Expected . 203
Empty DFB to Replace Obsolete EFB . 208
Undefined Symbol 'xxxx' . 209
Call of Non-Function Block . 210
Parameter 'xxxx' Has to Be Assigned . 213
' xxxx' Is Not a Parameter of 'yyyy' . 214
DDT Component Is Missing . 215
EHC Parameters Out of Range . 216
Not a Valid Address . 217
140 NOG 111 00 Configuration Not Converted 218
E1163 Use of Unconfigured Direct Address . 219
The Instance Is Located on an Address That Is Not Configured 220

Appendix B FAQ Conversion Errors . 221
FAQ Conversion Errors . 221

Index . 227
6 33002515 02/2017

Safety Information
Important Information

NOTICE
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, service, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.
33002515 02/2017 7

PLEASE NOTE
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.

BEFORE YOU BEGIN
Do not use this product on machinery lacking effective point-of-operation guarding. Lack of
effective point-of-operation guarding on a machine can result in serious injury to the operator of
that machine.

This automation equipment and related software is used to control a variety of industrial processes.
The type or model of automation equipment suitable for each application will vary depending on
factors such as the control function required, degree of protection required, production methods,
unusual conditions, government regulations, etc. In some applications, more than one processor
may be required, as when backup redundancy is needed.
Only you, the user, machine builder or system integrator can be aware of all the conditions and
factors present during setup, operation, and maintenance of the machine and, therefore, can
determine the automation equipment and the related safeties and interlocks which can be properly
used. When selecting automation and control equipment and related software for a particular
application, you should refer to the applicable local and national standards and regulations. The
National Safety Council's Accident Prevention Manual (nationally recognized in the United States
of America) also provides much useful information.
In some applications, such as packaging machinery, additional operator protection such as point-
of-operation guarding must be provided. This is necessary if the operator's hands and other parts
of the body are free to enter the pinch points or other hazardous areas and serious injury can occur.
Software products alone cannot protect an operator from injury. For this reason the software
cannot be substituted for or take the place of point-of-operation protection.

WARNING
UNGUARDED EQUIPMENT
 Do not use this software and related automation equipment on equipment which does not have

point-of-operation protection.
 Do not reach into machinery during operation.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
8 33002515 02/2017

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation
protection have been installed and are operational before placing the equipment into service. All
interlocks and safeties related to point-of-operation protection must be coordinated with the related
automation equipment and software programming.
NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation
protection is outside the scope of the Function Block Library, System User Guide, or other
implementation referenced in this documentation.

START-UP AND TEST
Before using electrical control and automation equipment for regular operation after installation,
the system should be given a start-up test by qualified personnel to verify correct operation of the
equipment. It is important that arrangements for such a check be made and that enough time is
allowed to perform complete and satisfactory testing.

Follow all start-up tests recommended in the equipment documentation. Store all equipment
documentation for future references.
Software testing must be done in both simulated and real environments.
Verify that the completed system is free from all short circuits and temporary grounds that are not
installed according to local regulations (according to the National Electrical Code in the U.S.A, for
instance). If high-potential voltage testing is necessary, follow recommendations in equipment
documentation to prevent accidental equipment damage.
Before energizing equipment:
 Remove tools, meters, and debris from equipment.
 Close the equipment enclosure door.
 Remove all temporary grounds from incoming power lines.
 Perform all start-up tests recommended by the manufacturer.

WARNING
EQUIPMENT OPERATION HAZARD
 Verify that all installation and set up procedures have been completed.
 Before operational tests are performed, remove all blocks or other temporary holding means

used for shipment from all component devices.
 Remove tools, meters, and debris from equipment.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
33002515 02/2017 9

OPERATION AND ADJUSTMENTS
The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English
version prevails):
 Regardless of the care exercised in the design and manufacture of equipment or in the selection

and ratings of components, there are hazards that can be encountered if such equipment is
improperly operated.

 It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe
operation. Always use the manufacturer’s instructions as a guide for functional adjustments.
Personnel who have access to these adjustments should be familiar with the equipment
manufacturer’s instructions and the machinery used with the electrical equipment.

 Only those operational adjustments actually required by the operator should be accessible to
the operator. Access to other controls should be restricted to prevent unauthorized changes in
operating characteristics.
10 33002515 02/2017

About the Book
At a Glance

Document Scope
This document describes the functionality and performance scope of the Concept Application
Converter for Unity Pro.

Validity Note
This document is valid for Unity Pro 12.0 or later.

Related Documents

You can download these technical publications and other technical information from our website
at http://www.schneider-electric.com/en/download

Title of Documentation Reference Number
Unity Pro Program Languages and Structure Reference Manual 35006144 (English),

35006145 (French),
35006146 (German),
35013361 (Italian),
35006147 (Spanish),
35013362 (Chinese)

Unity Pro Operating Modes 33003101 (English),
33003102 (French),
33003103 (German),
33003696 (Italian),
33003104 (Spanish),
33003697 (Chinese)

Modicon Modbus Plus Network Planning and Installation Guide 31003525
33002515 02/2017 11

12 33002515 02/2017

Unity Pro
Requirements and conversion
33002515 02/2017
Requirements and conversion

Part I
Requirements and conversion

Overview
This section contains requirements and information about the conversion.

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
1 General Description of the Unity Pro Concept Converter 15
2 Requirements 19
3 Language Differences 51
4 Possible application behavior change 87
5 The Conversion Process 101
6 Conversion Procedure 103
33002515 02/2017 13

Requirements and conversion
14 33002515 02/2017

Unity Pro
General Description
33002515 02/2017
General Description of the Unity Pro Concept Converter

Chapter 1
General Description of the Unity Pro Concept Converter

Overview
This chapter contains a general description of the Unity Pro Concept Converter.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General Description 16
Conversion with the Conversion Wizard 17
33002515 02/2017 15

General Description
General Description

Brief description
The Concept Converter is an integrated function in Unity Pro, which is used to convert Concept
applications into Unity Pro. This means that Concept programs can also be operated in Unity Pro.
Substitute objects are used in place of objects that cannot be converted. The Unity Pro project can
be analyzed using the main menu Create → Analyze Project. Subsequently messages are
displayed in the output window to find the substitute objects.
Elements on the Concept application that can not be converted are logged in the conversion report.
Descriptions of the respective procedures are provided in chapter Conversion procedure
(see page 103).
NOTE: Back conversion from Unity Pro to Concept is not possible.

Conversion
The conversion is carried out in 4 steps:
1. In Concept: Export the Concept application using the Concept converter which creates an ASCII

file (*.ASC).
NOTE: Do not use the project with used DFBs (Re-Connect to Equal) option when creating the
*.ASC file. Unity Pro cannot import the application if this option is used.

2. In Unity Pro: Open the exported ASCII file (*.ASC) in Unity Pro.
3. In Unity Pro: Automatic conversion of the ASCII file into Unity Pro source file format.
4. In Unity Pro: Automatic import of the Unity Pro source file.

Conversion options for Concept projects
You can enter conversion options (see Unity Pro, Operating Modes) in Unity Pro before the
conversion that have effects on the conversion result.

Atrium cannot be converted
Atrium configurations cannot be converted into Unity Pro.

Conversion Wizard
Please refer to Conversion with the Conversion Wizard (see page 17).

WARNING
UNEXPECTED APPLICATION BEHAVIOR
The Concept Converter translates the application but does not ensure its correct operation. Test
the application after the conversion.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
16 33002515 02/2017

General Description
Conversion with the Conversion Wizard

Application Conversion as a Whole
To convert an application as a whole, while keeping the same PLC family, and selection of
application parts or remapping of I/O objects is not needed, use the Concept Application Converter
directly via the Unity Pro menu File → Open.

Partial Application Conversion
To convert an application partially and/or the PLC family must be changed or remapping of I/O
objects is needed, use the conversion wizard via the Unity Pro menu Tools → Convert Partially.
For detailed information, please refer to the Introduction (see Unity Pro, Operating Modes) to the
Conversion Wizard.

Conversion Wizard
The conversion wizard is an integrated part of Unity Pro.
You can use it to
 convert applications, exported out of legacy applications (Concept and PL7) to Unity Pro
 convert legacy applications partially or as a whole
 remap I/O objects (channels, variables etc.) during conversion by means of the wizard
 adapt concurrently the hardware configuration of the new application in Unity Pro
 modify the amount of used memory in the CPU
The conversion wizard is available if you have chosen to install a converter (e.g. Concept
Application Converter) during the setup of Unity Pro.

General Procedure
General procedure to convert a legacy application to Unit Pro

Step Action
1 Export your application out of your legacy programming system (e.g. as an ASC

file out of Concept).
2 Create a new application in Unity Pro selecting a CPU with enough memory and

the I/O access capabilities needed.
Optionally you can configure the I/O modules expected to be needed but you can
modify the hardware configuration even later (see step 6).

3 Launch the conversion wizard in Unity Pro via Tools → Convert Partially.
Result: The conversion wizard asks you to select the exported legacy source file.

4 Select the exported legacy source file.
Result: The converter analyzes the source file and displays the result in the
3 tabs of the conversion wizard.

5 Select the parts of the application (or the complete application) to be converted
in the Structure tab.
33002515 02/2017 17

General Description
Conversion Wizard Documentation
For detailed information on the conversion wizard, please refer to the Operating Modes Manual ->
Conversion Wizard.

6 Remap the I/O objects for getting them compliant with the new hardware
configuration.
Concurrently you can modify the hardware configuration of the new application
in Unity Pro.
Note: To save a backup file of your intermediate I/O mapping you can use the
Save button. With Load you can reload your latest saved intermediate I/O
mapping.

7 After finishing all your selections and manual modifications click OK.
Result: The converter applies the defined remapping to the selected parts of the
source file and imports the results into the opened Unity Pro Application.

8 Continue working on the opened application, save it or export as an XEF file.

Step Action
18 33002515 02/2017

Unity Pro
Requirements
33002515 02/2017
Requirements

Chapter 2
Requirements

Overview
This chapter contains the requirements for converting a Concept project into a Unity Pro project.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Concept Version 20
Supported Hardware Platforms 21
Configuration 22
System 23
EFBs 31
Programming Language SFC 34
Programming Language LD 35
Programming Language ST/IL 47
Programming Language LL984 49
Programming Language FBD 50
33002515 02/2017 19

Requirements
Concept Version

General
Projects from Concept versions 2.11 and 2.5 and 2.6 can be converted to Unity Pro projects.

Preconversion
If an older version of a Concept project should be converted to Unity Pro, the project must be first
converted within Concept to bring it to version 2.6 status for security reasons.
20 33002515 02/2017

Requirements
Supported Hardware Platforms

General
The Concept Converter accepts applications using the following hardware platforms:
 Quantum
 Compact
 Momentum

Manual Corrections
NOTE: The Concept Converter converts as far as possible the modules when equivalencies are
existing. It is mandatory to check the result according to the process needs. The settings of the
hardware modules (parameters) are not converted but set to default values and must be entered
for each module in Unity Pro. Channel objects are converted as far as possible. Nevertheless, the
program may have to be adapted according to the different behavior with the original module.

Quantum Applications
Concept Quantum applications are converted to Unity Pro Quantum applications.

Compact Applications
With global conversion, Concept Compact applications are converted to Quantum applications
with a default hardware configuration containing a CPU (140 CPU 534 14A/U) and a power supply
(140 CPS 424 00).
With partial conversion (conversion wizard) it is recommended to prepare a Modicon M340
hardware configuration.

Momentum Applications
With global conversion, Concept Momentum applications are converted to Quantum applications
with a default hardware configuration containing a CPU (140 CPU 534 14A/U) and a power supply
(140 CPS 424 00).
With partial conversion (conversion wizard) it is recommended to prepare a Modicon M340
hardware configuration.

Safety PLC
NOTE: It is not possible to recover an application from Concept to Unity Pro Safety PLC. To build
a safety system, refer to the Safety Manual.
33002515 02/2017 21

Requirements
Configuration

General
Concept sections created using the LL984 programming language appear as well as non-IEC
LL984 sections in Unity.

Restrictions for old LL984 configurations
The following points from LL984 configurations are no longer supported by Unity Pro:

Hot Standby (HSBY)
There are the following differences for converting the Concept Hot Standby to Unity Pro:

The Concept converter replaces the CPU from Concept with the new Hot Standby CPU 671 60 and
the Concept Hot Standby Module 140 CHS 111 00 is removed. All Hot Standby parameters will be
transferred to the Unity application.
NOTE: It is not possible to recover an application from Concept to Unity Pro safety PLC. To build
a safety system, refer to the safety manual.
NOTE: As the CPU in Concept only requires one slot, but the new Unity CPU requires two,
overlaps in the rack my arise. These must be resolved manually by the user.

Not supported by Unity Pro Supported by Unity Pro
Loadables Necessary functionality of system loadables has been

integrated into Unity Pro.
Unity Pro does NOT provide equivalents for all other
loadables.

ASCII messages Will not be converted.
6x range (register in expanded
memory)

Will not be converted.

Data protection configuration
extension

Will not be supported.

Concept Unity Pro
The Hot Standby system in
Concept is based on the
140 CHS 111 00 module.

This module is no longer supported by Unity Pro.

The 140 CHS 111 00 module is
purely a Hot Standby Module for a
single slot. The power is supplied
via the rack.

The CPU 671 60 module is a CPU module for two slots
with a fixed assigned connection for data exchange.
The Hot Standby system is integrated into the
CPU 671 60 module.
22 33002515 02/2017

Requirements
System

Security
The access authorizations defined in Concept are not converted to Unity Pro.
Security under Unity Pro does not - refer to the corresponding installation as it does under Concept.

Program Execution
Program execution using Concept and Unity Pro are different. It can lead to different behavior
during the first program run after a restart.
Program execution for Concept:
1. Write the outputs (program run n-1)
2. Read the inputs (program run n)
3. Program processing
Program execution for Unity Pro:
1. Read the inputs
2. Program processing
3. Write the outputs
Example:
In Concept, you have assigned a 4x register to a digital output and stopped the PLC when the value
is "true". After a restart, the value remains "True" during the first program run even if you have
modified the process conditions.

Specified Execution Order
The execution order in the function block language in Concept is determined first of all by how the
FFBs are positioned. If the FFBs are then linked graphically, the execution order is determined by
the data flow. After this the execution order can be changed based on the intention.
In Unity Pro after conversion it is not possible to see in what order the FFBs were positioned.
Therefore, whenever the order cannot be determined unambiguously from the data flow rule alone,
the order is defined by the Concept project.
The defined execution sequence is shown by means of a rectangle with the step number in the
upper right-hand corner of the FFB.

Single Sweep Function
The single sweep function is no longer supported by Unity Pro.
The corresponding functionality can be realized in Unity Pro using the Debug function
"Breakpoints".
33002515 02/2017 23

Requirements
EFB Download
Using Concept, all platform dependent EFBs can be placed at any time and loaded in all PLC
platforms. Any errors detected during the program execution are written to the message memory.
In Unity Pro, only valid EFBs can be placed. Download to the PLC is only possible if the EFBs used
are consistent with the PLC platform.

Reference Data Editor (RDE)
RDE tables created in Concept are converted to Unity Pro when they are placed in the same
directory as the Concept ASCII file.

Global Variable Values
Because of different restart behaviors after a power outage, it is possible that the global variable
states of two PLCs that restart differently are not the same after the first program run.
There are two different types of restart behavior:
1. All 16 bit PLCs (all Momentum, Quantum 113, 213, 424) continue executing the program at the

point at which it was interrupted.
2. All 32 bit PLCs (Quantum 434, 534) start the program run at the beginning.
Unity Pro supports the 1st type of restart behavior described above.

State RAM
The Concept State RAM register addresses are assigned to IEC conforming addresses in
Unity Pro.
I/O module addresses are converted either to "flat" addresses or to topological addresses.

State RAM Register Without I/O Module
State RAM register addresses without assigned I/O modules are represented with "flat" addresses:

For this, the register number is added to the end of the introduction.
The address reads as follows:
%[IM][W]Register number

Concept Unity Pro
4x %MWx
3x %IWx (1)

0x %Mx
1x %Ix
(1) = If Modicon M340 is the target platform, there is no equivalent for input State RAM registers (%IWx).
The addresses are converted formally to flat addresses and must be corrected by the user.
24 33002515 02/2017

Requirements
State RAM Register With I/O Module
State RAM register addresses with assigned I/O modules can either be represented on Quantum
with "flat" addressing as described above or with topological addressing.
To define that State RAM register addresses will be converted to topological addressing, open the
Conversion Settings tab via Tools → Options in Unity Pro and activate the Generate Topological
Addresses for Quantum check box before converting.
If the check box is not activated, the State RAM register addresses are converted to "flat"
addresses (for Quantum only).
If Compact or Momentum applications are converted with the conversion wizard, topological
addressing is used by default, regardless whether the check box is activated or not.
State RAM register addresses with assigned I/O modules (topological)

The following information is read from the configuration to provide a sufficient topological
description of State RAM register addresses with assigned I/O modules:
 Bus number (corresponds to drop head in Concept)
 Drop
 Rack
 Module
 Channel
The complete address reads as follows:
%[IQ][W]<\Busnumber.Drop\>Rack.Module.Channel

Concept Unity Pro
4x %QWt
3x %IWt
0x %Qt
1x %It
t = topological description
33002515 02/2017 25

Requirements
State RAM Assignment Using Derived Data Types
In Concept, data structure elements begin at BYTE limits.
In Unity Pro, data structure elements begin at WORD limits.
Example of a derived data type:
TYPE
 SKOE:
 STRUCT
 PAR1: BOOL;
 PAR2: BYTE;
 PAR3: BOOL;
 PAR4: WORD;
 PAR5: BOOL;
 PAR6: WORD;
 END_STRUCT;
END_TYPE

 The derived data types are stored in the state RAM when using Concept:
26 33002515 02/2017

Requirements
The same derived data types are stored in the state RAM when using Unity Pro:

Timer, Date, Battery Monitoring
Timer address, date/time of day and the battery monitoring can no longer be assigned to the State
RAM with Unity Pro. All required information can be accessed via the control panel.
When Concept is converted to Unity Pro, DFBs are created which can be simulated in Unity Pro
without further manual modifications of these functionalities.
NOTE: The Concept Timer Register is 16 bits long and has an accuracy of 10 ms. The equivalent
system word %SW18 in Unity Pro is 32 bits long and has an accuracy of 100 ms. If this accuracy
is not sufficient, the FREERUN function from the System library can be used, which delivers
accuracy of up to 1 ms.
NOTE: When dealing with days of the week, the value 1 corresponds to Sunday in Concept and
Monday in Unity Pro.
33002515 02/2017 27

Requirements
Quantum Diagnostics Words
In Unity, the diagnostics words are specified to be a certain number:
 Local I/O: 16 Words
 RIO I/O: 16 Words
 DIO I/O: 16 Words
In Concept it was also possible to specify a smaller number of diagnostics words for the individual
I/Os.
Keep this difference in mind, since it can cause problems.

Topological Addresses
The topological addresses are assigned so that if the hardware configuration remains the same,
they occupy the same I/O connections as they were assigned in Concept.
The user sees the hardware addresses in Unity Pro that they are using, without having to carry out
the intermediate step via the State RAM.

Located Variable
Located BOOL variables in Concept are converted to EBOOL variables in Unity Pro.
Unity Pro provides this new EBOOL variable for the detection of transitions (edges). This
"Elementary BOOL type" is used for %Ix, %Mx and unlocated variables.
EBOOL variables can be forced.
The EBOOL variable provides three informational items:
 Current value
 Historical value
 Force information.
Only the current value can be accessed, the other values can only be accessed via product specific
functions.

Longer Cycle Time via EBOOL
In Unity, as opposed to Concept, the edge and force information is updated from EBOOL variables
during program runtime.
For this reason on the Quantum CPU 434, CPU 534 and CPU 311 platforms the assignment of
EBOOL variables is only half as fast as the assignment of BOOL variables.
NOTE: If you need variables in the signal memory, use BOOL variables and assign them to the
memory area %MW (e.g. BoolVar : BOOL AT %MW10). Otherwise use unlocated BOOL
variables.
28 33002515 02/2017

Requirements
Constants
Constants in Concept are converted to write-protected variables in Unity Pro.
Unity Pro does not provide constants. Comparable functionality is achieved using write-protected
variables.

%Mx Register
In Concept, the 0x registers are not buffered. They are reset to zero with every warm restart.
In Unity Pro, the %Mx registers are buffered ("RETENTIVE", "VAR_RETAIN"), i.e. Conform to IEC.
Do not use the possibility to set the 0x register to zero on every warm restart if you use a project
in Concept that you want to convert to Unity Pro.
NOTE: If you require non-buffered behavior, define the warm restart event with the SYSSTATE
function block and explicitly copy the value 0 (zero) to the %Mx register.

Forced Outputs (%M)

WARNING
UNEXPECTED SYSTEM BEHAVIOR
Do not relay on the Memory Protect switch.
The behavior of forced outputs (%M) between Modsoft/Proworx/Concept and Unity Pro has
changed.
 With Modsoft/ProWORX/Concept you cannot force outputs when the Memory Protect switch

of the Quantum CPU is set to the "On" position.
 With Unity Pro you can force outputs even when the Memory Protect switch of the Quantum

CPU is set to the "On" position.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

WARNING
UNEXPECTED SYSTEM BEHAVIOR
Reforce the outputs following a cold start.
The behavior of forced outputs (%M) between Modsoft/Proworx/Concept and Unity Pro has
changed.
 With Modsoft/ProWORX/Concept, forced outputs maintain their values following a cold start.
 With Unity Pro, forced outputs lose their values following a cold start.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
33002515 02/2017 29

Requirements
Quantum Remote I/O Control
In Concept, only LL984 sections can be assigned I/O stations (Drops). This is not possible in
Concept projects with IEC conforming sections (FBD, LD, SFC, IL, ST).
Unity Pro offers this option, in which a logic is recreated in accordance with LL984. This logic must
be entered manually, however.
Example of a section processing order in Unity Pro:
Section n-2

Section n-1

RIO call (u,v,w)

Section n

Section n+1

RIO call (u+1,w,x)

Section n+2

RIO call (u+2,x,y)

RIO (x,y,z) is the explicit I/O call here:
 Write the outputs to the I/O station x.
 Wait at the inputs of the I/O station y.
 Prepare the inputs of the I/O station z.
NOTE: Take these new settings into consideration when structuring your project.

Setting Variables Cyclically
Unlocated variables cannot be set cyclically in Unity Pro. (It is possible in Concept).
If you need to set variables cyclically in your project, you should use located variables.
%Mx/%1x registers (EBOOL) can be forced.
%MWx/%IWx registers can be set cyclically (only numerical values).
30 33002515 02/2017

Requirements
EFBs

General
The following options are available for converting Concept EFBs to Unity Pro:
 The EFBs are also supported in Unity Pro; they are mapped on a one to one basis.
 The EFBs are no longer supported in Unity Pro.

Instead of EFBs appropriate DFBs are placed in the application. The functionality remains
unaffected by this.

 The EFBs are no longer supported by Unity Pro.
Instead of EFBs, DFBs with no programmatic content are placed in the application. These DFBs
contain all the Concept parameters.
An error message is displayed that says that the programmatic content for these DFBs must still
be created.

Generic EFs
There are only a few generic elementary functions in Concept (EFs) e.g. MOVE, SEL, MUX. With
many other functions, the elementary data type is added to the name of the function.
In Unity Pro, many of these functions are used without the elementary data type added to the name
(as defined in IEC 61131). Therefore, the converter removes the added data type from the name
of the function.
In some cases, the use of generic functions in Unity Pro will lead to analytic errors. In these cases,
disable the Generate Generic EFs check box.
Open the Conversion Settings tab via Tools → Options in Unity Pro to enable/disable the Generate
Generic EFs check box before converting.
 When this checkbox is enabled, the converter removes the added data type from the name of

the function.
 When this checkbox is not enabled, the converter will leave the added data type in the name of

the function.

DIAGNO Library
When converting Concept to Unity Pro for all DIAGNO blocks the station parameter is omitted.
The following EFBs from the DIAGNO library in Concept are converted to empty DFBs in Unity Pro.
 ACT_DIA
 XACT_DIA
 ERR2HMI
 ERRMSG
NOTE: These DFBs, created in Unity Pro have all the Concept parameters but no programmatic
content. An error message is displayed that says that the programmatic content for these DFBs
must still be created.
33002515 02/2017 31

Requirements
During the program creation in Unity Pro replace the DFBs ACT_DIA, and XACT_DIA with the DFB
XACT.
For all DIAGNO blocks which can be extended in Concept (D_PRE, D_GRP ...), the extensible
inputs (IN1 ... INx) are gathered together in one input. This is implemented using a nested logic
AND link. In the FBD language the AND block is positioned at the same location as the DIAGNO
block by the converter. This overlap must be resolved manually by the user.

SYSTEM Library
The SKP_RST_SCT_FALSE and LOOPBACK EFBs cannot be used in Unity Pro.

FUZZY Library
The FUZZY library is not supported with the normal Unity Pro range but can be installed as an
optional library.

HANDTABL Library
The HANDTABL library is no longer supported by Unity Pro.

EXPERTS Library
The following Concept EFBs are converted to DFBs in Unity Pro:
 ERT_TIME
 SIMTSX22
 EFBs from the EX family
 EFBs from the MVB family
 EFBs from the ULEX family
NOTE: These DFBs, created in Unity Pro have all the Concept parameters but no programmatic
content. An error message is displayed that says that the programmatic content for these DFBs
must still be created.
The data structures DPM_TIME and ERT_10_TTAG from the time stamp module 140 ERT 854 10
have been changed. The MS element was broken up into MS_LSB and MS_MSB. For more
information about this, see State RAM Assignment Using Derived Data Types, page 26.
Outputs which describe data structures must be assigned event variables using the (=>)
assignment operator within the parameter brackets in the ST and IL languages. This happens
automatically during conversion (from Unity 2.0 onwards). The functionality remains the same but
the section of the program looks a little different.
32 33002515 02/2017

Requirements
EFBs that Use Time Functions
In Unity Pro, function components using Time functions (Timer, Diagnostic, Control Components)
remain in RUN mode, even if the SPS is set to STOP mode.

Converted EFBs
During conversion, Unity Pro standardizes the EFB offer by grouping redundant EFBs. The
respective EFBs are automatically converted and the project adjusted accordingly.

Renamed EFBs
The following diagnostics EFBs are renamed when converting Concept to Unity Pro:

The Quantum configuration EFB for the Backplane Expander 140 XBE 100 00 is renamed when
converting Concept to Unity Pro:

CAUTION
UNEXPECTED BEHAVIOR OF THE CONTROL
Function components using Time functions behave differently in Unity Pro and Concept.
You must take these different behaviors into consideration during the conversion of Concept
applications.
Failure to follow these instructions can result in injury or equipment damage.

Concept Unity Pro
XACT D_ACT
XREA_DIA D_REA
XLOCK D_LOCK
XGRP_DIA D_GRP
XDYN_DIA D_DYN
XPRE_DIA D_PRE

Concept Unity Pro
XBP XBE
33002515 02/2017 33

Requirements
Programming Language SFC

General
For some programming languages there are restrictions to observe when converting a project from
Concept to Unity Pro.

Parallel/Alternative Sequence
A parallel branch may not be directly followed by an alternative branch.
This type of sequence is not permitted according to IEC 1131.
Unity Pro does not support this type of sequence, although it is possible in Concept.
The converter transfers this type of project to Unity Pro, but manual modifications are subsequently
required.
This problem can be solved by inserting an dummy step between the branches.
34 33002515 02/2017

Requirements
Programming Language LD

General
For some programming languages there are restrictions to observe when converting a project from
Concept to Unity Pro.

Conversion of the picture
When converting a Concept project to Unity Pro, the ladder diagram LD Picture is also converted,
which can lead to a restructuring of the picture.

Crossovers with connections between Boolean objects
In Concept, FFB connections between Boolean objects may be edited.
This may result in crossovers.
Example of an FFB connection between Boolean objects (coils, contacts, horizontal, and vertical
connections) in Concept:

Following the conversion from Concept to Unity, an FFB connection between Boolean objects may
look like this:
33002515 02/2017 35

Requirements
In the Unity LD Editor, such FFB connection may be:
 deleted,
 moved,
 copied and pasted.
However, such FFB connection cannot be created in the Unity LD Editor.
The FFB connection will remain after moving in Unity.

Connection to the right bus bar
A connection to the right bus bar is no longer required.
36 33002515 02/2017

Requirements
Automatically created connections
In Concept, the contact c9 is not connected with INPUT PV of the component.

In Unity, the contact c9 would automatically be connected with INPUT PV because both cells
directly border in Concept.
33002515 02/2017 37

Requirements
During the conversion from Concept to Unity, the contact c9 is therefore moved down to avoid the
creation of an automatic connection in Unity.

Conversion of the output picture
During the conversion it is desired that the conversion of the picture from Concept to Unity is as
exact as possible. To achieve this, the following rules are applied.
Rules for Object Positioning:
 The distance between two objects must be at least one cell.
 When two FFBs are connected, the minimum distance must equal the number of cells of the first

FFB’s width.
 The cells in Unity are smaller. If an FFB partially occupies another cell, an additional cell is

required for the FFB.
 If an object (contact or coils) has a vertical connection (OR Link), this vertical connection will be

located at the end of the cell of the object.
 An additional cell is required if:
 a vertical connection (OR Link) with an INPUT FFB exists
 the source FFB has output variables
 the target FFB has input variables

 A coil may not be directly connected to the left bus bar.
38 33002515 02/2017

Requirements
Rules for the conversion of FFB connections:
 FFB connections between variables/constants and FFBs will be ignored. In these cases, Unity

will automatically create a connection.
 Purely horizontal FFB connections between objects that are not FFBs will be replaced with

horizontal connections with multiple segments.
 When two OR objects are connected, a horizontal connection is first connected to the right side

of the source OR object. An FFB connection will then be created between this horizontal
connection and the target object. This occurs because the two OR objects would otherwise be
combined during the import into Unity.

 Each point of the left bus bar can only be occupied by one connection.
Example of a picture in Concept:
33002515 02/2017 39

Requirements
The picture after the conversion to Unity.

The following actions were performed during the conversion according to the rules above:
 The space that is occupied by the FFB was expanded to two columns.
 One column each was added at the Input and Output sides of the FFB.
 The connections between coils/contacts and the FFB were realized with FFB connections, not

with horizontal connections with multiple segments.

Recognize and disconnect LD Networks
The converter must recognize networks in LD sections during the conversion. To achieve this, the
following rules are applied:
 An LD Network is a group of objects that are connected with each other without any other

connections to other objects (except the bus bar).
 The minimum distance is always applied to a complete column of a network. This means that if

an object of a column requires a certain minimum distance, all other objects are also moved with
a higher or equal horizontal position.

 If there are several networks in the same row in Concept, the following network will be moved
vertically until it no longer occupies the same rows with the preceding network.

 To avoid undesired automatically created FFB connections, the space that is occupied by an
FFB and its connection space will be checked for crossovers. In the event of crossovers the
following objects will be moved horizontally.
40 33002515 02/2017

Requirements
Schematic diagram of an LD Network in Concept with crossovers
33002515 02/2017 41

Requirements
Schematic diagram of an LD Network after the conversion to Unity
42 33002515 02/2017

Requirements
Separate LD Networks
IEC LD sections contain many independent graphic areas (networks).
During the conversion of IEC LD sections, additional columns are added to the networks to avoid
undesired automatically generated links in Unity Pro.
If the additionally inserted columns were to extend across the entire section, the original graphic
would be modified too much. Therefore, the sections are divided in networks during the conversion
and additional columns are only inserted for the associated network.
Inserting additional columns may cause a network to exceed its maximum section width and it is
then wrapped into the next line.
If this causes networks to vertically overlap, the overlapping of the logic can lead to undesired
automatic links in Unity Pro.
Open the Conversion Settings tab via Tools → Options in Unity Pro to enable/disable the Separate
LD Networks check box before converting.
 When this checkbox is enabled, recognized networks are moved vertically, which prevents

overlapping.
 When this checkbox is not enabled, recognized networks are not vertically moved. The original

vertical arrangement of the graphics is maintained, but error messages may occur due to
overlapping.

LD Column Break
Inserting additional columns may cause a network to exceed its maximum section width and it is
then wrapped into the next line.
Open the Conversion Settings tab via Tools → Options in Unity Pro to edit the LD Column Break
option before converting.
The number entered here determines the column after which a network is wrapped to the next
column.
33002515 02/2017 43

Requirements
Wrapping networks that are too wide
Since the width of the networks is expanded during the conversion the maximum section width may
be exceeded.
To show the network that is now too wide, the part of the network that reaches beyond the far right
edge of the section will be shown in a new row.
The connections are shown as connectors.
Example of an LD Network in Concept.
44 33002515 02/2017

Requirements
The wrapped LD Network after the conversion to Unity.

Objects to recognize transitions
The different ways of handling ladder diagram LD objects in Concept (calling an FB) and in Unity
Pro (system call) makes the use of State RAM variables (0x/1x register) necessary.
Because of the requirement that several write accesses to the 0x/1x register are possible during a
cyclical sweep, there can be differing Online behavior between Concept and Unity Pro.
The objects affected are:
 Contact to recognize positive transitions
 Contact to recognize negative transitions
In Concept the "Old Value" to recognize a transition will only be updated once per cycle.
In Unity Pro the "Old Value" will be updated during every write access.
33002515 02/2017 45

Requirements
Example:

Concept: Switch %QX1 from 0 -> 1 and the value of %MW1 and %MW2 increase.
Unity Pro: Switch %QX1 from 0 -> 1 and only the value of %MW1 increases.
NOTE: Use objects to recognize transitions with a certain variable only once per cycle.
Also see Located Variable, page 28 and Unity Pro Reference Manual, Use of set and reset coils
leads to edge loss (see Unity Pro, Program Languages and Structure, Reference Manual).

Macros
Macros (name begins with @) will be rejected by the converter because macros cannot be
implemented in Unity. However, if you try to import an application with macros, the macros will be
replaced with Dummy DFBs (indicated with the ‘~’ in the application name).
Error messages regarding these Dummy DFBs will appear during the analysis of the project. To
correct these errors, simply remove all DFBs that were created to replace macros.
46 33002515 02/2017

Requirements
Programming Language ST/IL

General
For some programming languages there are restrictions to observe when converting a project from
Concept to Unity Pro.

Generic EFBs
Only call generic EFBs instances once.
Using Concept 2.2, assign the outputs directly after the EFB call of a variable.

Syntax with Concept 2.5
Only use the new syntax for Concept 2.5 (from Unity V2.0 onwards it is automatically converted).
Syntax with Concept 2.5:
GenEFB(in1:=x1, in2:=x2, out1=>x3, out2=>X4;

in1, in2, out1 and out2 are type ANY.

Generic EFBs in Concept
List of generic EFBs in Concept:
 COMM library
 XXMIT

 CONT_CTL library
 DEADTIME

 EXTENDED library
 HYST
 INDLIM
 LIMD
 SAH

 LIB984 library
 FIFO
 LIFO
 R2T
 SRCH
 T2T
 GET_3X
 GET_4X
 PUT_4X
33002515 02/2017 47

Requirements
Declaring EFBs
The declaration of EFBs in Unity Pro is found in the variables editor and no longer in the ST/IL
sections as with Concept.
EFBs declared this way are no longer limited to only one section.
48 33002515 02/2017

Requirements
Programming Language LL984

General
For some programming languages there are restrictions to observe when converting a project from
Concept to Unity Pro.

LL984 is now supported by Unity Pro
NOTE: With Unity Pro 6.0 the LL984 language is supported for Quantum PLCs (but not for
Quantum Safety PLCs).
With Unity Pro 6.1 or later the LL984 language is supported for Modicon M340 PLCs with Modicon
M340 firmware 2.4 or later.
With Unity Pro 11.0 or later the LL984 language is supported for Modicon M580 PLCs on
BME•584040, BME•585040 and BME•586040 CPUs, firmware version greater and equal to 2.1.
33002515 02/2017 49

Requirements
Programming Language FBD

General
For some programming languages there are restrictions to observe when converting a project from
Concept to Unity Pro.

Macros
When converting a Concept project to Unity Pro, sections created using macros are also
converted.
These sections can also be manually copied and modified.
50 33002515 02/2017

Unity Pro
Language Differences
33002515 02/2017
Language Differences

Chapter 3
Language Differences

Overview
This chapter contains information about language differences.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Functions Not Present in Unity 53
EFB Replaced by Function 54
FFBs Not Available For All Platforms 55
INOUT Parameters 60

Parameter Type Changed 61
ANY_ARRAY_WORD Parameters 62

Unique Naming required 63
Incomplete LD Generation 64
LD Execution Order Changed 65
Constants 69
Indices in ST and IL 70
Calculate with TIME and REAL 71

WORD Assignments to BOOL Arrays 72

Topological Address Overlapping 73
Substitute %QD by %MF 74
Structure Alignment Changed 75
Undefined Output on Disabled EFs 76
Variables at Empty Pins 78
The set action remains active, even when the associated step becomes inactive 79
SFC Section Retains its State When Performing an Online Modification 80
SFCCNTRL Function Block in Unity Behaves Different to Concept 81

Weekday Numbering 82
33002515 02/2017 51

Language Differences
System Timer 83
Initial Values 84
Macros 86

Topic Page
52 33002515 02/2017

Language Differences
Functions Not Present in Unity

DFB Wrapper
Functions from Concept that are not present in Unity get a DFB wrapper if they are called in ST
sections (e.g., WORD_AS_UDINT). For example:
WAUD(* UDINT *) := WORD_AS_UDINT (LOW := WAUL, (* WORD *) HIGH := WAUH(*
WORD *));

. . . looks like this after conversion:
WAUD(* UDINT *) := FBI_ST1_75_33 (LOW := WAUL, (* WORD *)HIGH := WAUH(*
WORD *));

Manual Correction
FBI_ST1_75_33 is the instance name of the provided DFB wrapper. However, the call is still
invalid for the analyzer because the converter cannot yet do multi-object syntax corrections in ST.
(Will be present in V2.0).
You must correct this manually to:
FBI_ST1_75_33 (LOW := WAUL, (* WORD *) HIGH := WAUH(* WORD *), OUT =>
WAUD);
33002515 02/2017 53

Language Differences
EFB Replaced by Function

DFB Wrapping
Some standard Concept EFBs are implemented in Unity as functions.
In such cases, a wrapping DFB is provided so that the original interface of the Concept EFB
remains valid.
54 33002515 02/2017

Language Differences
FFBs Not Available For All Platforms

Overview
The FFBs (functions/function blocks) listed below can only be used on Quantum platforms (except
SFC_RESTORE, see following table).

A subset of these FFBs can be used on M580 platform also.
If Modicon M340 is the target platform, these FFBs appear marked in red and indicated as "type
error".

FFBs Not Available
Communication library

I/O Management library

Family FFB Compatible platforms
Extended CREAD_REG Quantum

CWRITE_REG
MBP_MSTR Quantum, M580
READ_REG Quantum
WRITE_REG
MODBUSP_ADDR
SYMAX_IP_ADDR
TCP_IP_ADDR
XXMIT

Family FFB Compatible platforms
Analog I/O Configuration I_FILTER Quantum, M580

I_SET
O_FILTER
O_SET
33002515 02/2017 55

Language Differences
Analog I/O Scaling I_NORM Quantum, M580
I_NORM_WARN
I_PHYS
I_PHYS_WARN
I_RAW
I_RAWSIM
I_SCALE
I_SCALE_WARN
O_NORM
O_NORM_WARN
O_PHYS
O_PHYS_WARN
O_RAW
O_SCALE
O_SCALE_WARN

Immediate I/O IMIO_IN Quantum
IMIO_OUT

Family FFB Compatible platforms
56 33002515 02/2017

Language Differences
Quantum I/O Configuration ACI030 Quantum, M580
ACI040
ACO020
ACO130
AII330
AII33010
AIO330
AMM090
ARI030
ATI030
AVI030
AVO020
DROP
ERT_854_10
NOGSTATUS Quantum
QUANTUM
XBE
XDROP Quantum, M580

Family FFB Compatible platforms
33002515 02/2017 57

Language Differences
Motion library

Obsolete Lib library

Family FFB Compatible platforms
MMF Start CFG_CP_F Quantum

CFG_CP_V
CFG_CS
CFG_FS
CFG_IA
CFG_RA
CFG_SA
DRV_DNLD
DRV_UPLD
IDN_CHK
IDN_XFER
MMF_BITS
MMF_ESUB
MMF_INDX
MMF_JOG
MMF_MOVE
MMF_RST
MMF_SUB
MMF_USUB

Family FFB Compatible platforms
Extensions/Compatibility GET_3X Quantum, M580

GET_4X
PUT_4X
IEC_BMDI
58 33002515 02/2017

Language Differences
System library

Family FFB Compatible platforms
SFC Management SFC_RESTORE Quantum, Premium, M580
Hot StandBy HSBY_RD Quantum

HSBY_ST
HSBY_WR
REV_XFER Quantum
33002515 02/2017 59

Language Differences
INOUT Parameters

Manual Correction
INOUT parameter syntax in ST (and IL) must be corrected manually. Examples are shown:
Ascii_FIFO_OUT (Pile := AscFifo_Mess);

AscFifo_Out := Ascii_FIFO_OUT.DataOut;

. . . is manually corrected to:
Ascii_FIFO_OUT (Pile := AscFifo_Mess, DataOut => AscFifo_Out);

Output Parameters
INOUT parameters in ST sections that were output parameters in Concept (e.g., DataOut of FIFO)
must be moved manually in ST and IL to the parameters inside parentheses associated with the
call.
If INOUT parameters that were outputs only in Concept are connected only to a link at the output
side, they must get a manually declared variable at the input side as well. The link must be deleted
if it is not connected to another IN/OUT variable. Targets of the deleted link must be assigned to
the manually declared variable.
This is done automatically in V2.0.

Change of Variable Type
The converter changes the type of direct variables at INOUT parameters of communication blocks
to ARRAY[0..0] OF WORD.

This must be corrected manually to correspond to the size of the array.
60 33002515 02/2017

Language Differences
Parameter Type Changed

Change
The parameter type has been changed from type WORD to an array of located words.

Explanation
Unity Comm EFBs no longer accept a single WORD address for the communication field because
more than one WORD is written. So the converter introduces an artificial array (shown in the
conversion report) that can be reached from the project tree through the appropriate hyperlink:
"For var WORD1 type ARRAY[0..0] OF WORD generated"

The array has a single word size because the converter can not determine its size. The user,
therefore, needs to manually configure the correct array size.
33002515 02/2017 61

Language Differences
ANY_ARRAY_WORD Parameters

Error Message
For EF/EFB pins that have the type WORD in Concept and have been changed to
ANY_ARRAY_WORD in Unity, "Cannot import variables" will be the reported type. Such pins usually
have a single register address as a formal parameter in Concept, but it is actually used to point to
an array of words for which the size has not been explicitly declared.

Change of Parameter Type
In Unity, an array of words has to be declared for this purpose. This is why the converter changes
the type to ARRAY[0..0] OF WORD.

However, the converter cannot determine the required size because a size declaration is absent
in the Concept application. Therefore, the converter defines one data element, [0..0], as a
replacement for the original variable.
It is up to the user to replace this default range of one element with the number of elements
required by the application.

Redefine Back to a One-Dimensional WORD Array
In case the application defined data structures that are mapped to registers that describe the data
to be worked with, significant work to redefine this back to a one-dimensional WORD array is
required. However, this is necessary for Unity V1.0, for example:
{Echanges_CR2 : [MAST]} : (r: 42, c: 7) E1092 data types do not match
('CREADREG.REG_READ:ANY_ARRAY_WORD'<->'table_rec_cr2:peer_Table')

Example:

The Unity converter V2.0 will change these EFB parameter types to ANY, avoiding this problem.
62 33002515 02/2017

Language Differences
Unique Naming required

Unique name
In Concept applications, section names can have the same name as a DDT. That is not the case
in Unity.
The converter checks section names to see if they are redundant of DDT names. If so, the
converter appends "_Sect" to the section name.
33002515 02/2017 63

Language Differences
Incomplete LD Generation

LD Generation Not Done Completely
In some cases, LD generation cannot be completed. This can happen when the algorithm allows
an object that requires the same position as an existing object. In these cases, the pre-existing
object is overwritten.
Messages are issued to make you aware of this:
{SAFETY_INTERLOCKS_PLC3 : [MAST]} :
(r: 8, c: 3) E1189 converter error: 'Overwrite happened when generating
LD network - see report'
{SAFETY_INTERLOCKS_PLC3 : [MAST]} : (r: 8, c: 3) E1002 syntax error

Details in Conversion Report
In the conversion report, which may be opened after being imported through the hyperlink in the
project tree, some additional detail about the message is given:
09:29:05.953 > Error: LD Object PTFDTP1_ENABLED with type coil
overwritten

The user should compare the conversion result to a printout of the original section and correct the
converted section accordingly.

Label or Link Views
If in LD networks, some links seem to have disappeared, it's because for a better reading they have
been replaced by labels, to see the links, make a right click and select the Show as link option.
64 33002515 02/2017

Language Differences
LD Execution Order Changed

Different Execution Orders
NOTE: Unity’s LD execution order can differ from Concept’s. In Unity, one LD network can be
completed before the next is started.
The converter follows the Concept execution order in graphical positioning, making the original
order visible to the user. However, since Unity calculates the order anew (without the possibility of
forcing it from the converter), there can be execution order discrepancies.

Generate ConvError Hints
Open the Conversion Settings tab via Tools → Options in Unity Pro to enable/disable the Generate
ConvError Hints check box before converting.
 When this checkbox is enabled, ConvError objects are generated in the LD programs during the

conversion to draw attention to special issues.
 When this checkbox is not enabled, no ConvError objects will be generated during the

conversion.

Concept
When analyzing in Concept, the execution order is calculated. The result is shown in parentheses
after the instance names in this image.
The selected block is executed in the middle of the other network, even though it has no direct
connection to it. Concept calculates the execution order from the block position.
33002515 02/2017 65

Language Differences
This is the original section as it appears in Concept:

The used variables are initialized in a way that the result of the comparator EQ_INT becomes "true"
after execution of the first cycle in Concept:
66 33002515 02/2017

Language Differences
Testing execution in single cycle mode in Concept shows the expected result. The comparator
result becomes "true" after the first cycle:
33002515 02/2017 67

Language Differences
Unity
The converted network reflects the Concept execution order in the graphical position of the blocks:

The image also shows the execution status stopped at a breakpoint in the first cycle. The
comparator EQ_INT is already executed and will not deliver a "true" result because the first
ADD_INT integrator block is executed after it.

Solution
Replace the connection via a variable by a link to achieve the same result as in Concept.
68 33002515 02/2017

Language Differences
Constants

Losing the Read-Only Behavior
Constants are not accepted as private DFB variables. Therefore, they are converted to initialized
variables in DFBs, in this way losing the read-only behavior.
33002515 02/2017 69

Language Differences
Indices in ST and IL

High Resolution
In addition to INT now DINT will be allowed as array index type in all areas of Unity Pro, but with
limited value ranges.
For DINT the index may only contain INT values (-32768 ... 32767).
70 33002515 02/2017

Language Differences
Calculate with TIME and REAL

Manual Correction
When TIME and REAL variables are multiplied in ST, REAL_TO_DINT must be inserted into the
REAL variable manually.
33002515 02/2017 71

Language Differences
WORD Assignments to BOOL Arrays

Manual Correction
Assignments of HEX WORDS to complete Bool arrays sent to Word registers are possible in
Concept, but not in Unity. A manual correction must be done, for example:
('AR2_BOOL[0]:BOOL'<->'16#0100:DINT')

('AR2_BYTE[0]:BYTE'<->'16#55AA:DINT')

('AR2_BYTE[0]:BYTE'<->'16#AA55:DINT')

Solution
The ST code must be changed to single-component assignments.
The hex word must be split into single bits:
AR2_BOOL[17] := true;
72 33002515 02/2017

Language Differences
Topological Address Overlapping

Same Topological Address
In Unity, you are warned (during application analysis) if the same topological address is assigned
to multiple variables.
33002515 02/2017 73

Language Differences
Substitute %QD by %MF

Introduction
Variables that are directly addressed in Concept with %QD can be initialized floating point
constants or dual word constants.
When mainly floating point constants appear, the Substitute %QD by %MF checkbox should be
enabled.

Conversion Settings
Open the Conversion Settings tab via Tools → Options in Unity Pro to enable/disable the
Substitute %QD by %MF check box before converting.
 When this checkbox is enabled, %QD variables are converted to %MF variables.
 When this checkbox is not enabled, %QD variables are converted to MW variables.
74 33002515 02/2017

Language Differences
Structure Alignment Changed

DPM_Time Structure
Unity uses a 2-byte alignment for structures in contrast to Concept (1-Byte) to speed up the access
to structure components. This affects system structures mapped to StateRam, because the same
structures in Unity can be bigger including some byte gaps.
The concerned structure is DPM_Time, which has been redefined for Unity to re-map to the correct
hardware addresses.
Concept’s DPM_Time definition:
sync: BOOL
ms: WORD
...

Unity’s DPM_Time definition:
sync: BOOL
ms_lsb: BYTE
ms_msb: BYTE
...

Manual Correction
If an application that includes the DPM_time structure is converted, the analyze/build process will
fail for the redefined structure components (in the above example, ms_lsb, ms_msb).

The user has to manually change the usage of these structure components in the application
accordingly.
33002515 02/2017 75

Language Differences
Undefined Output on Disabled EFs

Outputs of EFs Not Kept
In case the EN switches from TRUE to FALSE, the outputs of EFs from the previous cycle are not
kept in Unity. This reduces the memory consumption in the PLC. This is different from EFBs, which
keep their value from the previous cycle. Concept uses static links to latch the value from the
previous cycle.

Execution Behavior Differs Significantly
If a Concept application relies on the outputs of EFs to keep their old values, the execution
behavior in UNITY will differ significantly.

Manual Correction
The application has to be changed manually.
Links from outputs, which are assumed to keep their value, need to be replaced by variables. If the
EN of an EF is set to false, the EF is not executed and a connected variable is not touched.

Concept
The output of the disabled SEL EF is kept and used as input for the EQ_INT function block:
76 33002515 02/2017

Language Differences
Unity
The output of the disabled SEL EF gets an undefined value, in this case 0. Therefore the output of
EQ_INT function block has become true:

Solution
If the EN of the SEL is set to false, the ENO of the EQ_INT is also set to false, but the connected
output variable keeps its value from the previous cycle:

NOTE: The use of a variable is mandatory to retain network results in case an EF becomes
disabled.
33002515 02/2017 77

Language Differences
Variables at Empty Pins

Introduction
In Unity Pro it is necessary to fill provided inputs and outputs for derived data types or I/O
parameters (this is not necessary in Concept).
If these types are not generic, the converter will fill these initially empty inputs and outputs with
variables created by the converter.

Conversion Settings
Open the Conversion Settings tab via Tools → Options in Unity Pro to enable/disable the Variables
at empty pins check box before converting.
 When this checkbox is enabled, empty link points will be filled with variables created by the

converter.
 When this checkbox is not enabled, empty link points will not be filled with variables created by

the converter.
78 33002515 02/2017

Language Differences
The set action remains active, even when the associated step becomes inactive

In Concept
The action could be reset in other sections.

In Unity Pro
The action only becomes inactive, when it is reset in another step of the current SFC section, using
the qualifier R.
NOTE: To get indentical behaviour, the solution is to use "Section" as Action instead of "Variable".
In the section you can program SET(bit_xxx) ; and in the section outside the SFC you can program
a RESET (bit_xxx) and it will work.
33002515 02/2017 79

Language Differences
SFC Section Retains its State When Performing an Online Modification

Online Modifications Without Resetting
In Unity it is possible to do online modifications of an SFC chart without resetting it. The SFC chart
retains its state and will continue the execution.
NOTE: In Concept, the online modification of an SFC chart usually results in the resetting of the
chart.
80 33002515 02/2017

Language Differences
SFCCNTRL Function Block in Unity Behaves Different to Concept

RESETSFC vs. INIT
In Concept the RESETSFC input of SFCCNTRL resets all action variables of the related SFC section.

In Unity the INIT input of SFCCNTRL (that has a similar function as RESETSFC input in Concept)
only resets the action variables that have been set by the SFC step. Action variables, for example,
set by user logic or the Animation Table will not be reset.
33002515 02/2017 81

Language Differences
Weekday Numbering

Different Numbering
In Unity the numbering of weekdays is different than Concept:

SET_TOD / GET_TOD
Function blocks: SET_TOD and GET_TOD will be converted to Unity as DFBs, which work in both
directions.
Because SET_TOD expects a "Concept" numbered weekday and translates it as a Unity coded
value. Also the GET_TOD reads Unity value and returns to User the Concept value.

System Word %SW49
NOTE: We do not recommend that you mix GET_TOD and SET_TOD programming with the use of
system words (e.g. %SW49) in the same application.

Number Unity Concept
1 Monday Sunday
7 Sunday Saturday
82 33002515 02/2017

Language Differences
System Timer

Concept
Concept’s system timer was located on a user-defined register word (16-bit) and incremented at
10 ms.

Unity
Unity provides an incremental timer with 100 ms updating (%SW18).

A 10 ms timer can be logically created using the FREERUN function (sec timer).
33002515 02/2017 83

Language Differences
Initial Values

Definition of Initial Values
Concept allows the initial values on DFB pins of a structured array to be defined.
Unity forbids this option for pins of array type. This option is reserved for output pins of structure
type.
The converter reflects this with the following error message in the conversion log:

Error: Cannot convert initial values of call-by-reference data (pin
Add_PV.in1)

Pins to be Connected
At the same time, Unity enforces pins of array type and input pins of structured type to be
connected, which in this case leads to analysis errors:
{ALL:[MAST]}: (r:26, c:68) E1194 oarameter ´IN2´has to be assigned
{ALL:[MAST]}: (r:26, c:68) E1194 oarameter ´IN1´has to be assigned

Solution
To solve this problem, create a variable of the pin’s type and initialize it with the original values.
Connect this constant to the appropriate pin of each DFB instance.
Example
84 33002515 02/2017

Language Differences
Solution: Add initialized variable.
33002515 02/2017 85

Language Differences
Macros

Macros Replaced by Dummy DFBs
Macros (name starting with @) are refused by the converter because Unity does not implement
macros. However, if you try to import an application containing macros, they will be replaced by
dummy DFBs (as indicated by the '~' character in the application name).
While analyzing the project, you will get error messages regarding these dummy DFBs. To correct
these errors, simply remove all of the DFBs that were created as a replacements for macros.

AXx, EPARx Parameters
AXx and EPARx parameters in Concept’s extensible motion blocks are automatically invoked with
the newly required array instead of with Unity’s formerly present extensible pins. Constants present
at the Concept pins are also placed as initialization values to such arrays. However, variables and
links must be attached manually with move blocks to these arrays.
86 33002515 02/2017

Unity Pro
Possible application behavior change
33002515 02/2017
Possible application behavior change

Chapter 4
Possible application behavior change

Overview
This chapter contains information about possible application behavior change, when migrating
from Concept to Unity Pro.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General 88
Concept Behavior 89
IEC Demands 90
Unity Behavior 93
Consequences 95
33002515 02/2017 87

Possible application behavior change
General

Concept
In Concept and Unity Function Block interfaces are implemented with data structures (instance
areas) collecting parameters, according to the standard IEC61131 which both systems refer to.
Function Block invocations refer to those data structures. However, Concept does not include
output parameters into those instance areas. All parameters of DFB/EFBs (Elementary Function
Blocks) are generally handled by reference, therefore output parameters are directly written to by
the Function Block code by Concept. Unity DFB/EFBs buffer output parameters in the instance
area, as the standard IEC61131 prescribes.
The Concept behavior was used to enable, for example, easy manual mode implementation of
closed-loop-control function blocks.
If the output is written to, only once in a cycle, the behavior is the same in both systems.If output
values are not written in all invocation cases, but are assigned by several Function Block instances,
different behavior between both systems can result.
If the concerned variable is written to by some other control part prior to a Function Block having
the same output parameter, invoked in a case where the Function Block does not write to the
output, nothing changes in Concept, but in Unity the variable buffer value in the instance area
resulting from a previous invocation is assigned to the output parameter.
To detect such cases, multiple assignments to elementary variables or derived data type
components from Function Blocks are detected by the Concept converter, if the appropriate option
is checked:
 Detected for Elementary and Derived Function Blocks.
 Works in DFB and Program Sections.
 Reports during conversion in the build tab of the output window with textual identification of the

concerned locations.
 The same textual report appears in the Conversion report.
 Reports in FBD and LD sections with ‘ConvError’ blocks placed above the concerned Function

Blocks.
 On Analysis messages appear in the Analyze/Build tab of the output window, which can be

opened by double clicking and opening the concerned section and directly showing the
concerned Function Block.

Using this report, the user can adapt this code to ensure common operation, e.g. by changing the
DFB outputs to InOut parameters, which offer direct writing also in Unity.
NOTE: If the application uses multi-assignment on EFB outputs, you should carefully read the
following chapter to verify that the converted application works in the intended way (EFBs cannot
be changed by the user, only new ones can be introduced).
88 33002515 02/2017

Possible application behavior change
Concept Behavior

Parameters are Handled by Reference
In Concept all function block parameters are handled by reference, means the blocks receives a
pointer to the data of every function block pin and works directly on the connected variable.
Connected variables:

Function Block Code
Therefore in Concept it is up to the function block code to decide whether:
 to behave IEC compliant or
 to write input data or
 to read output data or
 not to write output data.
33002515 02/2017 89

Possible application behavior change
IEC Demands

Function Block
For the purposes of programmable controller programming languages, a function block is a
program organization unit which, when executed, yields one or more values.
Multiple, named instances (copies) of a function block can be created.
Each instance shall have an associated identifier (the instance name), and a data structure
containing its output and internal variables, and, depending on the implementation, values of or
references to its input variables.
All the values of the output variables and the necessary internal variables of this data structure
shall persist from one execution of the function block to the next.
Therefore, invocation of a function block with the same arguments (input variables) need not
always yield the same output values.

Assignment of a Value
Assignment of a value to an output variable of a function block is not allowed except from within
the function block.
The assignment of a value to the input of a function block is permitted only as part of the invocation
of the function block.
Unassigned or unconnected inputs of a function block shall keep their initialized values or the
values from the latest previous invocation, if any.
Allowable usage of function block inputs and outputs are summarized in table below, using the
function block FF75 of type SR.
The examples are shown in the ST language.

Usage Inside function block Outside function block
Input read IF IN1 THEN ... Not allowed 1, 2

Input assignment Not allowed 1 FB_INST(IN1:=A,IN2:=B);

Output read OUT := OUT AND NOT IN2; C := FB_INST.OUT;

Output assignment OUT := 1; Not allowed 1

In-out read IF INOUT THEN ... IF FB1.INOUT THEN...

In-out assignment INOUT := OUT OR IN1; 3 FB_INST(INOUT:=D);

1 Those usages listed as "not allowed" in this table could lead to implementation-dependent,
unpredictable side effects.

2 Reading and writing of input, output and internal variables of a function block may be performed
by the "communication function", "operator interface function", or the "programming, testing, and
monitoring functions" defined in IEC 61131-1.

3 Modification within the function block of a variable declared in a VAR_IN_OUT block is permitted.
90 33002515 02/2017

Possible application behavior change
EN and ENO in Function Blocks
For function blocks also an additional Boolean EN (Enable) input or ENO (Enable Out) output, or
both, can be provided by the manufacturer or user according to the declarations.
When these variables are used, the execution of the operations defined by the function block shall
be controlled according to the following rules:
1. If the value of EN is FALSE (0) when the function block instance is invoked, the assignments

of actual values to the function block inputs may or may not be made in an implementation-
dependent fashion, the operations defined by the function block body shall not be executed and
the value of ENO shall be reset to FALSE (0) by the programmable controller system.

2. Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system,
the assignments of actual values to the function block inputs shall be made and the operations
defined by the function block body shall be executed. These operations can include the
assignment of a Boolean value to ENO.

3. If the ENO output is evaluated to FALSE (0), the values of the function block outputs
(VAR_OUTPUT) keep their states from the previous invocation.

Not Connected EN Inputs
When EN inputs are left open the concerned blocks are not executed in Concept whereas they
would be executed in Unity Pro.
To eliminate this difference the Concept Converter applies a constant boolean value of FALSE to
not connected EN inputs. In this way achieving the same behavior as in Concept.

In-Out Variables
In-out variables are a special kind of variable used with program organization units (POUs), i.e.,
functions, function blocks and programs.
They do not represent any data directly but reference other data of the appropriate type. They are
declared by use of the VAR_IN_OUT keyword. In-out variables may be read or written to.

Inside a POU, in-out variables allow access to the original instance of a variable instead of a local
copy of the value contained in the variable.

Function Block Invocation
A function block invocation establishes values for the function block's input variables and causes
execution of the program code corresponding to the function block body.
These values may be established graphically by connecting variables or the outputs of other
functions or function blocks to the corresponding inputs, or textually by listing the value
assignments to input variables.
If no value is established for a variable in the function block invocation, a default value is used.
Depending on the implementation, input variables may consist of the actual variable values,
addresses at which to locate the actual variable values, or a combination of the two.
33002515 02/2017 91

Possible application behavior change
These values are always passed to the executing code in the data structure associated with the
function block instance.
The results of function block execution are also returned in this data structure.
Hence, if the function block invocation is implemented as a procedure call, only a single argument
- the address of the instance data structure - need be passed to the procedure for execution.
92 33002515 02/2017

Possible application behavior change
Unity Behavior

Changed Parameter Handling
To fulfill the IEC demands the normal EDT (Elementary Data Types) parameter handling was
changed from Concept to Unity.
The following figure describes the actual implementation in Unity.

The EFBs no longer get pointers to their connected pin variables.
They always get the data by value.
In every scan the application code updates the copy of the input data in the instance data, before
the function block is called (1).
The copy of the pin data is located in the instance data of the block and the function block code
always works on the instance data (2).
After the function block code execution the application code copies the updated function block
output data from the instance data to the connected output variables (3).
This is valid for all EDTs. Derived data types and more complex data types are treated still by
reference in some cases.
33002515 02/2017 93

Possible application behavior change
Addressing Modes
The addressing mode of a Function Block element is directly linked to the type of the element.
The currents known addressing modes are:
 by value (VAL)
 by address (L-ADR)
 by address + Number of elements (L-ADR-LG)
Table with four columns and legend

Function Block Invocation
The following rules must be taken into account while invoking a Function Block instance:
 All input_output parameters have to be filled
 All input parameters using the L-ADR or L-ADR-LG addressing modes have to filled
 All output parameters using the L-ADR or L-ADR-LG addressing modes have to filled
All other kind of parameters could be omitted while Function Block Instance invocation.
For input parameters, the following rules are applied (in the given order):
 The values of the previous invocation are used.
 If no previous invocation, the initial values are used.

- EDT
(Except
STRING)

STRING DDT Array DDT
Struct

ANY_
ARRAY

ANY...

Input
parameter

VAL L-ADR-LG L-ADR-LG L-ADR L-ADR-LG L-ADR-LG

Input_Output
parameter

L-ADR 1 L-ADR-LG L-ADR-LG L-ADR L-ADR-LG L-ADR-LG

Output
parameter

VAL VAL L-ADR-LG VAL L-ADR-LG L-ADR-LG

Public
Variable

VAL VAL - VAL - -

Private
Variable

VAL VAL - VAL - -

1 Except for BOOL type, the addressing mode is VAL.
94 33002515 02/2017

Possible application behavior change
Consequences

Potential Problems

NOTE:
Because of this architectural change, when an application is migrated from Concept to Unity you
have to evaluate the consequences of the migration, and specially in the following cases:
 Multi assignment of connected output variables:

In Concept there are function blocks, mainly in the closed-loop-control area, which do not write
their output values to the connected variables in special operating modes (manual mode).
In these special modes it was possible to write the variables from other locations inside the
application.
This will work in Unity only, if the variables are written after the function block call.
If they are written before the function block call, the copy process from the instance data to the
connected variables will overwrite this value with the old value from the instance data.

 Controlling output variables by animation table or HMI:
If a block doesn't write his outputs in special operating modes (like manual mode, see above),
it was possible to modify the connected output variables by animation tables or HMI.
This will no longer work in Unity, since the copy process from the instance data to the connected
variables of the function block will overwrite the modified value with the old value from the
instance data.

Changed EFB Layout
To avoid major problems, a lot of function blocks (mainly in the Motion and CLC area) were
changed in their layout from Concept to Unity to ensure a correct mode of operation in the intended
way for the function blocks.
The concerned pins were changed from type OUT to IN/OUT.

In nearly all cases the modification meets better the reality, since it is read from the concerned
output pins and so they are in fact IN/OUTs.

The following tables summarize the EFBs, where at least one pin was changed from OUT to
IN/OUT during migration from Concept to Unity.

WARNING
UNEXPECTED APPLICATION BEHAVIOR
Take care when an application is migrating from Concept to Unity.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
33002515 02/2017 95

Possible application behavior change
Library CONT_CTL:

Library Motion:

Family Function Block Concerned Pin
Controller PI_B OUT

PIDFF OUT
Output Processing MS OUT
Setpoint Management SP_SEL SP

Family Function Block Concerned Pin
MMF Start CFG_CP_F MFB, CFG_BLK

CFG_CP_V MFB, CFG_BLK
CFG_CS MFB, CFG_BLK
CFG_FS MFB, CFG_BLK
CFG_IA MFB, CFG_BLK
CFG_RA MFB, CFG_BLK
CFG_SA MFB, CFG_BLK
DRV_DNLD MFB
DRV_UPLD MFB
IDN_CHK MFB
IDN_XFER MFB
MMF_BITS MFB
MMF_ESUB MFB
MMF_INDX MFB
MMF_JOG MFB
MMF_MOVE MFB
MMF_RST MFB
MMF_SUB MFB
MMF_USUB MFB
96 33002515 02/2017

Possible application behavior change
Library Obsolete Lib:

Concept Converter Behavior
The Concept Converter normally handles the layout change in the following way, when a Concept
application is imported into Unity:
 Case 1: A variable is connected to the output pin in Concept:

The Concept Converter keeps the variable at the output side of the IN/OUT pin and adds the
variable additionally at the input side of the pin.

 Case 2: A link is connected to the output pin in Concept:
The Concept Converter removes the link, creates a new variable of the needed type and writes
this new variable to the start and end position of the removed link. Additionally the variable is
added to the input side of the pin.

Family Function Block Concerned Pin
CLC_PRO ALIM Y

COMP_PID Y, YMAN_N, OFF_N, SP_CAS_N
DERIV Y
INTEG Y
LAG Y
LAG2 Y
LEAD_LAG Y
PD_OR_PI Y
PI Y
PID Y
PID_P Y
PIP Y
PPI Y
VLIM Y

Extensions/Compatibility R2T OFF
SRCH INDEX
T2T OFF
33002515 02/2017 97

Possible application behavior change
Further Potential Problems
The following tables contain blocks, where also some consequences of the architectural change
from Concept to Unity may arise in case of multi-assignment, because in Concept:
 The blocks do not write their listed output pin in case of errors inside the block.
 The blocks do not write their listed output pin in COLD or WARM INIT scan.
 The blocks write their listed output pin conditionally depending from internal mode of operation.
Library CONT_CTL:

Library I/O Management:

Family Function Block Concerned Pin
Conditioning DTIME OUT

SCALING OUT
TOTALIZER OUT, INFO

Controller AUTOTUNE TRI, INFO
PI_B OUT_D, DEV
PIDFF OUT_D, INFO
STEP2 DEV
STEP3 DEV

Output Processing MS OUTD, STATUS
MS_DB OUTD, STATUS
SPLRG OUT1, OUT2

Setpoint Management RAMP SP
RATIO KACT, SP
SP_SEL LSP_MEM

Family Function Block Concerned Pin
Analog I/O
Configurationj

I_SET CHANNEL
O_SET CHANNEL

Analog I/O Scaling I_NORM_WARN WARN
I_PHYS_WARN WARN
I_SCALE_WARN WARN

Quantum I/O
Configurationj

ACI040 CHANNL1..16
ACO130 CHANNEL1..8
AII330 CHANNEL1..8, INTERNAL
AII33010 CHANNEL1..8
AIO330 CHANNEL1..8
ARI030 CHANNEL1..8
98 33002515 02/2017

Possible application behavior change
Library Motion:

Library Obsolete Lib:

Family Function Block Concerned Pin
MMF Start CFG_CP_F Q, ERROR

CFG_CP_V Q, ERROR
CFG_CS Q, ERROR
CFG_FS Q, ERROR
CFG_IA Q, ERROR
CFG_RA Q, ERROR
CFG_SA Q, ERROR
DRV_DNLD Q, ERROR, IDN_CNT
DRV_UPLD Q, ERROR, REG_CNT,

DATA_B, LK
IDN_CHK Q, ERROR, NOT_EQ
IDN_XFER Q, ERROR, OUT_RAW,

OUTCONV
MMF_ESUB Q, ERROR, RET1, RET2,

RET§
MMF_INDX Q, ERROR
MMF_JOG Q, ERROR
MMF_MOVE Q, ERROR
MMF_RST Q
MMF_SUB Q, ERROR, RET1, RET2,

RET§
MMF_USUB Q, ERROR, RET1, RET2,

RET§

Family Function Block Concerned Pin
CLC DELAY Y

PI1 ERR
PID1 ERR
PIDP1 ERR
THREE_STEP_CON1 ERR_EFF
THREEPOINT_CON1 ERR_EFF
TWOPOINT_CON1 ERR_EFF
33002515 02/2017 99

Possible application behavior change
NOTE: The pins were not changed, because in normal operation mode of the blocks this has no
influence.

CLC_PRO COMP_PID STATUS, ERR
DEADTIME Y
FGEN Y, N
INTEG STATUS
PCON2 ERR_EFF
PCON3 ERR_EFF
PD_OR_PI ERR, STATUS
PDM Y_POS, Y_NEG
PI ERR, STATUS
PID ERR, STATUS
PID_P ERR, STATUS
PIP ERR, SP2, STATUS
PPI ERR, SP2, STATUS
PWM Y_POS, Y_NEG
QPWM Y_POS, Y_NEG
SCON3 ERR_FF
VLIM STATUS

Extensions/Compatibility FIFO EMPTY, FULL
LIFO EMPTY, FULL

Family Function Block Concerned Pin
100 33002515 02/2017

Unity Pro
The Conversion Process
33002515 02/2017
The Conversion Process

Chapter 5
The Conversion Process

Conversion Process

General
A Concept project is exported from Concept and then converted automatically into a Unity Pro
project using the Unity Pro Concept Converter.

Conversion Process
Representation of the conversion process:

Description of the conversion levels:

Level Description
1 A project is exported from Concept.

An ASCII file is created.
2 The Unity Pro Concept Converter is called.

The ASCII file is converted into an XEF file.
3 The XEF file is imported into Unity Pro.

A Unity Pro project is created.
4 The error report is checked.

There must be no errors.
5 The project is now available in Unity Pro and can be generated and then loaded

into a PLC or processed in Unity Pro.
33002515 02/2017 101

The Conversion Process
Error Report and Analysis
Errors that occur during conversion are logged in an error report and displayed in an output
window.
Substitute objects are used in place of objects that cannot be converted. The Unity Pro project can
be analyzed using the main menu Create → Analyze Project. Subsequently messages are
displayed in the output window to find the substitute objects.
The errors displayed in the output window must be corrected manually to ensure the Unity Pro
project runs correctly.

Animation tables converting process
In Concept, RDE tables could have different names, the concept converter creates an animation
table for each data editor reference file found in the project folder.
For Prowrx32 Data Watch windows, every data Watch window will result in an Animation table.
102 33002515 02/2017

Unity Pro
Conversion Procedure
33002515 02/2017
Conversion Procedure

Chapter 6
Conversion Procedure

Overview
This chapter contains the procedures required to convert a Concept project into a Unity Pro project.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Exporting a Project from Concept 104
Importing a Project into Unity Pro 105
Missing Datatypes at the Beginning of the Import 106
Converting Only Parts of a Concept Application 107
Removing Accidentally Included Concept Macros 108
Initialization Values 109
If the convertedMomentum application contain more than one XMIT block 110
33002515 02/2017 103

Conversion Procedure
Exporting a Project from Concept

General
A Concept project that should be used in Unity Pro must first be exported from Concept. It is then
possible to use the Unity Concept Converter to make the conversion to a Unity Pro project.

Export Project
Perform the following steps to export a project:

Step Procedure
1 Start the Concept Converter program from the Concept program group.
2 Select File → Export..., to open the menu for selecting the export range.
3 Select the export range:

 Project with DFBs: All project information including the DFBs and data
structures (derived data types) used in the project are exported.

 Project without DFBs: All project information including all data structures
(derived data types), but not DFBs and macros, is exported.

Result: The dialog box for selecting the files to be exported is opened.
4 Select the following file extension:

 Export projects: Select the extention .prj from the format list box.

5 Select the project and confirm using OK.
Result: The project is stored in the current directory as an ASCII file (.asc).

6 End the Concept Converter program using File → Exit.
104 33002515 02/2017

Conversion Procedure
Importing a Project into Unity Pro

General
A Concept project that is be used in Unity Pro must first be exported from Concept. It is then
possible to use the Unity Concept Converter to make the conversion to a Unity Pro project.

Import Project
Carry out the following steps to convert and import a project:

Step Procedure
1 Launch Unity Pro.
2 Open the project exported from Concept using File → Open. Select the data type

CONCEPT PROJECTS (*.ASC).

NOTE: Do not use the project with used DFBs (Re-Connect to Equal) option
when creating the *.ASC file. Unity Pro cannot import the application if this option
is used.

3 Result:
The ASCII file is converted to Unity Pro source file format and imported
automatically.
Import errors and messages about objects that cannot be converted and have
substitute objects in their place, are displayed in an output window.

4 Edit the errors and messages in the output window manually to ensure the Unity
Pro project runs correctly.

5 To ensure that a project contains no more errors, select the menu command
Build → Analyse Project again.
33002515 02/2017 105

Conversion Procedure
Missing Datatypes at the Beginning of the Import

General
If the dialog at the beginning of the import claims for unknown DDTs, search for local type
declarations in this DDT and find out which of these are undefined.
Further, types unused but present in the opened *.asc file are reported as unknown in a dialog
during import.

Concept System Data Types
This happens for Concept system data types, which are considered for Concept to be always
presented and therefore not included in the export by Concept.
The Converter automatically includes the standard system data types of Concept individually, if
they are needed. They are part of the converter command and include file CConv.xml present in
the execution directory of Unity.
If the read-only-flag is removed, this file can be extended to include additional data types for user
EFB libraries.
Such data type files beyond the global/local ones are placed in the lib subdirectory of Concept to
be merged into the Concept application, but these data types do NOT appear in the Concept export
file.

Concept *.dty Files
The V1.1 version of the Concept converter will have the capability to add Concept *.dty files, which
are stored in the same directory as the *.asc file, to the converted application, as if their content
were appearing inside the *.asc file itself.
106 33002515 02/2017

Conversion Procedure
Converting Only Parts of a Concept Application

General
The Concept converter is prepared to convert complete applications and parts of applications.
If only parts of a Concept application are needed either
 use a reduced application export with Concept (see sections below) or
 use the Conversion Wizard (see Conversion with the Conversion Wizard, page 17).

Single DFB
If a single DFB is needed, make a new application with 1 single section and place a call to the
desired DFB into this section.
Export the application using the menu item Export with used DFBs in Concept.
Convert the resulting *.asc file in Unity Pro via File → Open.

Subset of Sections
To export a subset of sections use the File → Export → Program: Section(s) menu in Concept.
Select the source application and the desired sections and follow the user guidance to get a
reduced application.
However, if the section contains references to SFC steps, Concept requires to export the
referenced SFC section as well.
Convert the resulting *.sec file in Unity Pro with the Conversion Wizard via Tools → Convert
Partially.

Subset of Variables
To export a subset of variables first open the Variable Editor in Concept and select the desired
variables.
After that use the File → Export → Variables: Text delimited menu.
Convert the resulting *.txt file in Unity Pro with the Conversion Wizard via Tools → Convert
Partially.

Animation Tables
If animation table files are present in the application export directory, the animation tables will be
automatically included in the conversion result.
33002515 02/2017 107

Conversion Procedure
Removing Accidentally Included Concept Macros

General
If a Concept Macro has been included into the Concept export, this Macro is converted as if it were
a DFB and appears in the project browser tree as a DFB.
Delete this DFB because Unity Pro does not support Macros.
108 33002515 02/2017

Conversion Procedure
Initialization Values

General
Initialization values are contained in Concept export in an array, describing the State RAM.
This array is converted in Unity Pro to clusters, i.e. that it is cut into contiguous sequences of non-
zero values with single-zero values tolerated.
Each cluster is converted to an individual array with the names LL_SRAMxxx.
33002515 02/2017 109

Conversion Procedure
If the convertedMomentum application contain more than one XMIT block

Rule
The 171 CBU 78090, 171 CBU 98090, or 171 CBU 98091 processor uses a much faster COM port
speed than the legacy Momentum PLC.
As a result of this, the XMIT block might not function properly, if the converted Momentum
application contain more than one XMIT block.
The fast COM port speed might result in the next XMIT block to execute before the prior XMIT block
completes it's operation. If this happens, the block may appear to be functioning incorrectly.
 To avoid this simultaneous execution of the XMIT blocks, a time delay or additional logic to test
the DONE output of the XMIT block may need to be added to the block start or enable logic.
110 33002515 02/2017

Unity Pro
Blocks from Concept to Unity Pro
33002515 02/2017
Blocks from Concept to Unity Pro

Part II
Blocks from Concept to Unity Pro

Overview
This part contains a description of the blocks which are not part of Unity Pro as standard.
However, if these blocks were used in Concept they are generated during the project conversion
from Concept to Unity Pro in order to map the functionality configured in Concept into Unity Pro on
a one to one basis.

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
7 BYTE_TO_BIT_DFB: Type conversion 113
8 CREADREG: Continuous register reading 117
9 CWRITREG: Continuous register writing 125

10 DINT_AS_WORD_DFB: Type conversion 131
11 DIOSTAT: Module function status (DIO) 133
12 GET_TOD: Reading the hardware clock (Time Of Day) 135
13 LIMIT_IND_DFB: Limit with indicator 139
14 LOOKUP_TABLE1_DFB: Traverse progression with 1st degree interpolation 143
15 PLCSTAT: PLC function status 149
16 READREG: Read register 165
17 RIOSTAT: Module function status (RIO) 173
18 SET_TOD: Setting the hardware clock (Time Of Day) 177
19 WORD_AS_BYTE_DFB: Type conversion 181
20 WORD_TO_BIT_DFB: Type conversion 183
21 WRITEREG: Write register 187
33002515 02/2017 111

Blocks from Concept to Unity Pro
112 33002515 02/2017

Unity Pro
BYTE_TO_BIT_DFB
33002515 02/2017
BYTE_TO_BIT_DFB: Type conversion

Chapter 7
BYTE_TO_BIT_DFB: Type conversion

Description

Function description
This derived function block converts one input word from the BYTE data type to 8 output values of
the BOOL data type.

The individual bits of the byte at the input are assigned to the outputs according to the output
names.

EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:
33002515 02/2017 113

BYTE_TO_BIT_DFB
Representation in LD
Representation:

Representation in IL
Representation:
CAL BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
 BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
 BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
 BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
 BIT6=>BOOL_variable7, BIT7=>BOOL_variable8)

Representation in ST
Representation:
BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
 BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
 BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
 BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
 BIT6=>BOOL_variable7, BIT7=>BOOL_variable8) ;
114 33002515 02/2017

BYTE_TO_BIT_DFB
Parameter description
Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning
IN BYTE Input

Parameter Data type Meaning
BIT0 BOOL Output bit 0
BIT1 BOOL Output bit 1
: : :
BIT7 BOOL Output bit 7
33002515 02/2017 115

BYTE_TO_BIT_DFB
116 33002515 02/2017

Unity Pro
CREADREG
33002515 02/2017
CREADREG: Continuous register reading

Chapter 8
CREADREG: Continuous register reading

Introduction
This chapter describes the CREADREG block.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Description 118
Mode of Functioning 121
Parameter description 122
Modbus Plus Error Codes 123
33002515 02/2017 117

CREADREG
Description

Function description
This derived function block reads the register area continuously. It reads data from addressed
nodes via Modbus Plus.
EN and ENO can be configured as additional parameters.

NOTE: It is necessary to be familiar with the routing procedures of your network when
programming a CREADREG function. Modbus Plus routing path structures are described in detail in
the Modbus Plus Network Planning and Installation Guide (see page 11).
NOTE: This function block only supports the local Modbus Plus interface (no NOM).
If using a NOM work with the block CREAD_REG from the communication block library.

NOTE: This function block does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, use the block CREAD_REG of the communication block
library.
NOTE: Several copies of this function block can be used in the program. However, multiple
instancing of these copies is not possible.

Representation in FBD
Representation:
118 33002515 02/2017

CREADREG
Representation in LD
Representation:

Representation in IL
Representation:
CAL CREADREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 STATUS=>ErrorCode)

Representation in ST
Representation:
CREADREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 STATUS=>ErrorCode;
33002515 02/2017 119

CREADREG
Parameter description
Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameters Data type Meaning
NODEADDR INT Device address within the target segment
ROUTPATH DINT Routing path to target segment
SLAVEREG DINT Offset address of the first 4x register in the slave to

be read from
NO_REG INT Number of registers to be read from slave

Parameters Data type Meaning
REG_READ ANY_ARRAY_WORD Writing data

(For the file to be read a data structure must be
declared as a located variable.)

Parameters Data type Meaning
STATUS WORD Error Code
120 33002515 02/2017

CREADREG
Mode of Functioning

Function mode of CREADREG blocks
Although a large number of CREADREG function blocks can be programmed, only four read
operations may be active at the same time. It makes no difference whether these operations are
performed using this function block or others (e.g. MBP_MSTR, READREG). All function blocks use
one data transaction path and require multiple cycles to complete a task.
The complete routing information must be separated into two parts:
 in the NODEADDR of the destination node (regardless of whether it is located in the local segment

or in another segment) and
 the routing path, in case there is a link via network bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit information
units. It is not necessary to use "00" extensions (e.g. both routing paths 4711 and 47110000 are
valid, for NODEADDR 34 the result is destination address 47.11.34.00.00).

NOTE: This function block puts a heavy load on the network. The network load must therefore be
carefully monitored. If the network load is too high, the program logic should be reorganized to work
with the READREG function block, which is a variant of this function block that does not operate in
continuous mode, but is command driven.
33002515 02/2017 121

CREADREG
Parameter description

NODEADDR

Identifies the node address within the target segment.
The parameter can be entered as an address, located variable, unlocated variable or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run from 01 64 (see
Mode of Functioning, page 121). If the slave resides in the local network segment, ROUTPATH must
be set to "0" or must be left unconnected.
The parameter can be entered as an address, located variable, unlocated variable or literal.

SLAVEREG

Start of the area in the addressed slave from which the source data are read. The source area
always resides within the 4x register area. SLAVEREG expects the source reference as offset within
the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the variables or value of the
literal) = 40059).
The parameter can be entered as an address, located variable, unlocated variable or literal.

NO_REG

Number of registers to be read from slave processor (1 ... 100).
The parameter can be entered as an address, located variable, unlocated variable or literal.

STATUS

Error code, see Modbus Plus Error Codes, page 123
The parameter can be specified as an address, located variable or unlocated variable.

REG_READ

An ANY_ARRAY_WORD that is the same size as the requested transmission must be agreed upon
(≥ NO_REG) for this parameter. The name of this array is defined as a parameter. If the array is
defined too small, then only the amount of data is transmitted that is present in the array.
The parameter must be defined as a located variable.
122 33002515 02/2017

CREADREG
Modbus Plus Error Codes

Form of the function error code
The form of the function error code for Modbus Plus is Mmss, which includes:
 M is the high code
 m is the low code
 ss is a subcode

Hexadecimal error code
Hexadecimal error code for Modbus Plus:

Hex. Error
Code

Meaning

1001 Abort by user
2001 An operation type that is not supported was specified in the control block
2002 One or more control block parameters were modified while the MSTR

element was active (this only applies to operations which require several
cycles for completion). Control block parameters my only be modified in
inactive MSTR components.

2003 Illegal value in the length field of the control block
2004 Illegal value in the offset field of the control block
2005 Illegal value in the length and offset fields of the control block
2006 Unauthorized data field on slave
2007 Unauthorized network field on slave
2008 Unauthorized network routing path on slave
2009 Routing path equivalent to own address
200 A Attempting to retrieve more global data words than available
30ss Unusual response by Modbus slave (see page 124)
4001 Inconsistent response by Modbus slave
5001 Inconsistent response by network
6mss Routing path error (see page 124)

Subfield m shows where the error occurred (a 0 value means local node,
2 means 2nd device in route, etc) .
33002515 02/2017 123

CREADREG
ss hexadecimal value in 30ss error code
ss hexadecimal value in 30ss error code:

ss hexadecimal value in 6mss error code
NOTE: Subfield m in error code 6mss is an Index in the routing information that shows where an
error has been detected (a 0 value indicates the local node, 2 means the second device in the
route, etc.).
The ss subfield in error code 6mss is as follows:

ss hex. Value Meaning
01 Slave does not support requested operation
02 Non-existent slave registers were requested
03 An unauthorized data value was requested
05 Slave has accepted a lengthy program command
06 Function cannot currently be carried out: lengthy command running
07 Slave has rejected lengthy program command

ss
hexadecimal
value

Meaning

01 No response receipt
02 Access to program denied
03 Node out of service and unable to communicate
04 Unusual response received
05 Router-node data path busy
06 Slave out of order
07 Wrong destination address
08 Unauthorized node type in routing path
10 Slave has rejected the command
20 Slave has lost an activated transaction
40 Unexpected master output path received
80 Unexpected response received
F001 Wrong destination node specified for MSTR operation
124 33002515 02/2017

Unity Pro
CWRITEREG
33002515 02/2017
CWRITREG: Continuous register writing

Chapter 9
CWRITREG: Continuous register writing

Introduction
This chapter describes the CWRITREG block.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Description 126
Mode of Functioning 129
Parameter description 130
33002515 02/2017 125

CWRITEREG
Description

Function description
This derived function block writes continuously to the register area. It transfers data from the PLC
via Modbus Plus to a specified slave destination processor.
EN and ENO can be configured as additional parameters.

NOTE: When programming a CWRITREG function, you must be familiar with the routing procedures
used by your network. Modbus Plus routing path structures are described in detail in the Modbus
Plus Network Planning and Installation Guide (see page 11).
NOTE: This function block only supports the local Modbus Plus interface (no NOM).
If using a NOM work with the CWRITE_REG block from the communication block library.

NOTE: This function block does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, use the CWRITE_REG block from the communication
block library.
NOTE: Several copies of this function block can be used in the program. However, multiple
instancing of these copies is not possible.

Representation in FBD
Representation:
126 33002515 02/2017

CWRITEREG
Representation in LD
Representation:

Representation in IL
Representation:
CAL CWRITREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 STATUS=>ErrorCode)

Representation in ST
Representation:
CWRITREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 STATUS=>ErrorCode) ;
33002515 02/2017 127

CWRITEREG
Parameter description
Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameters Data type Meaning
NODEADDR INT Device address within the target segment
ROUTPATH DINT Routing path to target segment
SLAVEREG DINT Offset address of the first 4x register in the slave to

be written to
NO_REG INT Number of registers to be written from slave

Parameters Data type Meaning
REG_WRIT ANY_ARRAY_WORD Source data field

(A data structure must be declared as a located
variable for the source file.)

Parameters Data type Meaning
STATUS WORD Error Code
128 33002515 02/2017

CWRITEREG
Mode of Functioning

Function mode of CWRITREG blocks
Although an unlimited number of CWRITREG function blocks can be programmed, only four write
operations may be active at the same time. It makes no difference whether these operations are
performed using this function block or others (e.g. MBP_MSTR, WRITEREG). All function blocks use
one data transaction path and require multiple cycles to complete a task.
If several CWRITREG function blocks are used within an application, they must at least differ in the
values of their NO_REG or REG_WRIT parameters.

The complete routing information must be separated into two parts:
 in the NODEADDR of the destination node (regardless of whether it is located in the local segment

or in another segment) and
 the routing path, in case there is a link via network bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit information
units. It is not necessary to use "00" extensions (e.g. both routing paths 4711 and 47110000 are
valid, for NODEADDR 34 the result is destination address 47.11.34.00.00).

NOTE: This function block puts a heavy load on the network. The network load must therefore be
carefully monitored. If the network load is too high, the program logic should be reorganized to work
with the WRITEREG function block, which is a variant of this function block that does not operate in
continuous mode, but is command driven.
33002515 02/2017 129

CWRITEREG
Parameter description

NODEADDR

Identifies the node address within the target segment.
The parameter can be specified as an address, located variable, unlocated variable or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run from 01 64 (see
Mode of Functioning, page 129). If the slave resides in the local network segment, ROUTPATH must
be set to "0" or must be left unconnected.
The parameter can be specified as an address, located variable, unlocated variable or literal.

SLAVEREG

Start of the destination area in the addressed slave to which the source data are written. The
destination area always resides within the 4x register area. SLAVEREG expects the destination
address as an offset within the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the
variables or value of the literal) = 40059).
The parameter can be entered as an address, located variable, unlocated variable or literal.

NO_REG

Number of registers to be written to slave processor (1 ... 100).
The parameter can be specified as an address, located variable, unlocated variable or literal.

REG_WRIT

An ANY_ARRAY_WORD that is the same size as the planned transmission must be agreed upon (
≥ NO_REG) for this parameter. The name of this array is defined as a parameter. If the array is
defined too small, then only the amount of data is transmitted that is present in the array.
The parameter must be defined as a located variable.

STATUS

If MSTR error code is returned, see Modbus Plus Error Codes, page 123
The parameter can be specified as an address, located variable or unlocated variable.
130 33002515 02/2017

Unity Pro
DINT_AS_WORD_DFB
33002515 02/2017
DINT_AS_WORD_DFB: Type conversion

Chapter 10
DINT_AS_WORD_DFB: Type conversion

Description

Function description
This derived function block converts one input word from the DINT data type to 2 output values of
the WORD data type.

The individual words of the DINT input are assigned to the outputs according to the output names.

EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:

Representation in LD
Representation:

Representation in IL
Representation:
CAL DINT_AS_WORD_DFB_Instance (IN:=DINT_variable,
 LOW=>LowWord, HIGH=>HighWord)
33002515 02/2017 131

DINT_AS_WORD_DFB
Representation in ST
Representation:
DINT_AS_WORD_DFB_Instance (IN:=DINT_variable,
 LOW=>LowWord, HIGH=>HighWord) ;

Parameter description
Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning
IN DINT Input

Parameters Data type Meaning
LOW WORD least significant word
HIGH WORD most significant word
132 33002515 02/2017

Unity Pro
DIOSTAT
33002515 02/2017
DIOSTAT: Module function status (DIO)

Chapter 11
DIOSTAT: Module function status (DIO)

Description

Function description
This function provides the function status for I/O modules of an I/O station (DIO).
Each module (slot) is displayed as an output "status" bit. The bit on the far left side in "status"
corresponds to the slot on the far left side of the I/O station.
NOTE: If a module of the I/O station is configured and works correctly, the corresponding bit is set
to "1".
EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:

Representation in LD
Representation:
33002515 02/2017 133

DIOSTAT
Representation in IL
Representation:
CAL DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber,
 STATUS=>Status)

Representation in ST
Representation:
DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber,
 STATUS=>Status) ;

Parameter description
Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning
LINK UINT Link No. (0...2)
DROP UINT I/O station no: (1...64)

Parameter Data type Meaning
STATUS WORD Status bit pattern (see page 133) of an I/O station
134 33002515 02/2017

Unity Pro
GET_TOD
33002515 02/2017
GET_TOD: Reading the hardware clock (Time Of Day)

Chapter 12
GET_TOD: Reading the hardware clock (Time Of Day)

Description

Function description
This function block searches (together with the other function blocks in the HSBY group) the
configuration of the respective PLC for the necessary components. These components always
refer to the hardware actually connected.
Therefore the correct functioning of this function block on the simulators cannot be guaranteed.
The GET_TOD function block reads the hardware clock, if relevant registers are provided with this
configuration. If these registers are not present, the TOD_CNF output is set to "0".

EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:
33002515 02/2017 135

GET_TOD
Representation in LD
Representation:

Representation in IL
Representation:
CAL GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
 D_WEEK=>DayOfWeek, MONTH=>Byte_variable2,
 DAY=>Byte_variable3, YEAR=>Byte_variable4,
 HOUR=>Byte_variable5, MINUTE=>Byte_variable6,
 SECOND=>Byte_variable7)

Representation in ST
Representation:
GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
 D_WEEK=>DayOfWeek, MONTH=>Byte_variable2,
 DAY=>Byte_variable3, YEAR=>Byte_variable4,
 HOUR=>Byte_variable5, MINUTE=>Byte_variable6,
 SECOND=>Byte_variable7) ;
136 33002515 02/2017

GET_TOD
Parameter description
Description of the output parameters:

Parameters Data type Meaning
TOD_CNF BOOL "1" = 4x-register for hardware system clock was

found and the clock is operational.
"0" = time is set at the moment. In this case the other
outputs keep their values.

D_WEEK BYTE Weekday, 1 = Sunday .. 7 = Saturday
MONTH BYTE Month 1..12
DAY BYTE Day 1..31
YEAR BYTE Year 0..99
HOUR BYTE Hour 0..23
MINUTE BYTE Minute 0..59
SECOND BYTE Second 0..59
33002515 02/2017 137

GET_TOD
138 33002515 02/2017

Unity Pro
LIMIT_IND_DFB
33002515 02/2017
LIMIT_IND_DFB: Limit with indicator

Chapter 13
LIMIT_IND_DFB: Limit with indicator

Description

Function description
This derived function block transfers the unchanged input value (Input) to the Output, if the input
value is not less than the minimum value (LimitMinimum) and does not exceed the maximum
value (LimitMaximum). If the input value (Input) is less than the minimum value
(LimitMinimum), the minimum value will be transferred to the output. If the input value (Input)
exceeds the maximum value (LimitMaximum), the maximum value will be transferred to the
output.
Additionally, a indication is given if the minimum or maximum value is violated. If the value at the
(Input) input is less than the value at the (LimitMinimum) input, the (MinimumViolation)
output becomes "1". If the value at the (Input) input is more than the value at the
(LimitMaximum) input, the (MaximumViolation) output becomes "1".

The data types of the (LimitMinimum, Input, LimitMaximum) input values and the (Output)
output value must be identical.
EN and ENO can be configured as additional parameters.

Formula
Block formula:
OUT = IN, if (IN ≤ MX) & IN ≥ MN

OUT = MN, if (IN < MN)

OUT = MX, if (IN > MX)

MN_IND = 0, if IN ≥ MN

MN_IND = 1, if IN < MN

MX_IND = 0, if IN ≤ MX

MX_IND = 1, if IN > MX
33002515 02/2017 139

LIMIT_IND_DFB
Representation in FBD
Representation:

Representation in LD
Representation:

Representation in IL
Representation:
CAL LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
 MX:=LimitMaximum, MN_IND=>MinimumViolation,
 OUT=>Output, MX_IND=>MaximumViolation)

Representation in ST
Representation:
LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
 MX:=LimitMaximum, MN_IND=>MinimumViolation,
 OUT=>Output, MX_IND=>MaximumViolation) ;
140 33002515 02/2017

LIMIT_IND_DFB
Parameter description
Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning
LimitMinimum BOOL, BYTE, WORD,

DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Limit of minimum value

Input BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Input

LimitMaximum BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Limit of maximum value

Parameter Data type Meaning
MinimumViolation BOOL Display of minimum value violation
Output BOOL, BYTE, WORD,

DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Output

MaximumViolation BOOL Display of maximum value violation
33002515 02/2017 141

LIMIT_IND_DFB
142 33002515 02/2017

Unity Pro
LOOKUP_TABLE1_DFB
33002515 02/2017
LOOKUP_TABLE1_DFB: Traverse progression with 1st degree interpolation

Chapter 14
LOOKUP_TABLE1_DFB: Traverse progression with 1st
degree interpolation

Introduction
This chapter describes the LOOKUP_TABLE1_DFB block.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Description 144
Detailed description 146
33002515 02/2017 143

LOOKUP_TABLE1_DFB
Description

Function description
This function block linearizes characteristic curves by means of interpolation. The function block
works with variable support point width.
The number of XiYi inputs can be increased to 30 by modifying the size of the block frame
vertically. This corresponds to a maximum of 15 support point pairs.
The number of inputs must be even.
The X values must be in ascending order.

EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:

Representation in LD
Representation:
144 33002515 02/2017

LOOKUP_TABLE1_DFB
Representation in IL
Representation:
CAL LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
 XiYi1:=X_Coord_1_SupportPoint,
 XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
 QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1)

Representation in ST
Representation:
LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
 XiYi1:=X_Coord_1_SupportPoint,
 XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
 QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1) ;

Parameter description
Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning
XiYi1 REAL X coordinate 1. Support point
XiYi2 REAL Y coordinate 1. Support point
XiYin REAL X coordinate m/2. Support point
XiYim REAL Y coordinate m/2. Support point
X REAL Input variable

Parameter Data type Meaning
Y REAL Output variable
QXHI BOOL Indicator: X > Xm
QXLO BOOL Indicate X < X1
33002515 02/2017 145

LOOKUP_TABLE1_DFB
Detailed description

Parameter description
Each two sequential inputs (XiYi) represent a support point pair. The first input XiYi corresponds
to X1, the next one to Y1, the one after that to X2, etc.

For all types of input value in X found between these support points, the corresponding Y output
value is interpolated, while the traverse progression between the support points is viewed linearly.
For X < X 1 is Y = Y 1
For X > X m is Y = Y m
If the value at input X is higher than the value of the last support point Xm, the output QXHI becomes
"1".
If the value at input X is less than the value of the first support point X1, the output QXLO becomes
"1".

Principle of interpolation
Traverse progression with 1st degree interpolation)
146 33002515 02/2017

LOOKUP_TABLE1_DFB
Interpolation
The following algorithm applies to a point Y:

for X i ≤ X ≤ X i+1 and i = 1 ... (m-1)

Assuming: X 1 ≤ X 2 ≤ ... ≤ X i ≤ X i+1 ≤ ... ≤ X m-1 ≤ X m
The X values must be in ascending order.

Two consecutive X values can be identical. This could cause a discrete curve progression.

In this instance, the special case applies:
Y = 0.5 x (Y i + Y i+1)

for
X i = X = X i+1 and i = 1 ... (m-1)
33002515 02/2017 147

LOOKUP_TABLE1_DFB
148 33002515 02/2017

Unity Pro
PLCSTAT
33002515 02/2017
PLCSTAT: PLC function status

Chapter 15
PLCSTAT: PLC function status

Introduction
This chapter describes the PLCSTAT block.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Description 150
Derived Data Types 152
PLC status (PLC_STAT) 154

RIO status (RIO_STAT) for Quantum 156

DIO status (DIO_STAT) 158
33002515 02/2017 149

PLCSTAT
Description

Function description
This derived function block reads the Quantum PLC internal states and error bits and copies this
data to the data structures allocated to the respective outputs.
EN and ENO can be configured as additional parameters.

Only data with the input bit (PLC_READ, RIO_READ, DIO_READ) set to "1" will be read.

Evaluation
The evaluation of PLC_STAT (PLC status), RIO_STAT (I/O status) and DIO_STAT (I/O
communications status) is possible.
NOTE: The name of the output DIO_STAT is confusing. This output only relates to the remote I/O
Drop Status Information (S908) and not to the Distributed I/O status. To read the distributed I/O
status use the function block DIOSTAT (see page 133).

Representation in FBD
Representation:

Representation in LD
Representation:
150 33002515 02/2017

PLCSTAT
Representation in IL
Representation:
CAL PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag,
 RIO_READ:=CopyRIOStatusFlag,
 DIO_READ:=CopyDIOStatusFlag,
 PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status,
 DIO_STAT=>DIO_IO_Status)

Representation in ST
Representation:
PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag,
 RIO_READ:=CopyRIOStatusFlag,
 DIO_READ:=CopyDIOStatusFlag,
 PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status,
 DIO_STAT=>DIO_IO_Status) ;

PLCSTAT parameter description
Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning
PLC_READ BOOL 1 = copies the PLC status from the status table to the

output PLC_STAT.
RIO_READ BOOL 1 = copies the RIO status from the status table to the

output RIO_STAT.
DIO_READ BOOL 1 = copies the DIO status from the status table to the

output DIO_STAT.

Parameters Data type Meaning
PLC_STAT PLCSTATE, Contains the PLC status.
RIO_STAT RIOSTATE, Contains the RIO status (I/O status) for Quantum
DIO_STAT DIOSTATE, Contains the DIO status (I/O communication status)

Note: The name of this output is confusing. This
output only relates to the remote I/O Drop Status
Information (S908) and not to the Distributed I/O
status. To read the distributed I/O status use the
function block DIOSTAT (see page 133).
33002515 02/2017 151

PLCSTAT
Derived Data Types

Element description PLCSTATE
Description of the PLCSTATE element:

Element description RIOSTATE
Description of the RIOSTATE element

Element Data type Meaning
word1 WORD CPU status
word2 WORD Hot Standby Status
word3 WORD PLC status
word4 WORD RIO Status
word5 WORD Reserve
word6 WORD Reserve
word7 WORD Reserve
word8 WORD Reserve
word9 WORD Reserve
word10 WORD Reserve
word11 WORD Reserve

Element Data type Meaning
word1 WORD I/O station 1, module rack 1
word2 WORD I/O station 1, module rack 2
...
word5 WORD I/O station 1, module rack 5
word6 WORD I/O station 2, module rack 1
word7 WORD I/O station 2, module rack 2
...
word160 WORD I/O station 32, module rack 5
152 33002515 02/2017

PLCSTAT
Element description DIOSTATE
Description of the DIOSTATE element

Element Data type Meaning
word1 WORD Switch on error numbers:
word2 WORD Cable A error
word3 WORD Cable A error
word4 WORD Cable A error
word5 WORD Cable B error
word6 WORD Cable B error
word7 WORD Cable B error
word8 WORD Global communication status
word9 WORD Global cumulative error counter for cable A
word10 WORD Global cumulative error counter for cable B
word11 WORD I/O station 1 health status and repetition counter

(first word)
word12 WORD I/O station 1 health status and repetition counter

(second word)
word13 WORD I/O station 1 health status and repetition counter

(third word)
word14 WORD I/O station 2 health status and repetition counter

(first word)
...
word104 WORD I/O station 32 health status and repetition counter

(first word)
word105 WORD I/O station 32 health status and repetition counter

(second word)
word106 WORD I/O station 32 health status and repetition counter

(third word)
33002515 02/2017 153

PLCSTAT
PLC status (PLC_STAT)

General information
NOTE: Information corresponds to status table words 1 to 11 in the dialog PLC status.
The conditions are true when the bits are set to 1.

PLC status (PLCSTATE: word1)
Bit allocation:

Hot Standby status (PLCSTATE: word2)
Bit allocation:

Bit Allocation
10 Run light OFF
11 Memory protect OFF
12 Battery failed

Bit Allocation
1 CHS 110/S911/R911 present and OK

11 0 = CHS shift switch set to A
1 = CHS shift switch set to B

12 0 = PLCs have equal logic
1 = PLCs have unequal logic

13, 14 Remote system condition

15, 16 Local system condition
154 33002515 02/2017

PLCSTAT
PLC status (PLCSTATE: word3)
Bit allocation:

RIO status (PLCSTATE: word4)
Bit allocation:

Bit Allocation
1 First cycle

Bit Allocation
1 IOP defect
2 IOP timeout
3 IOP Loopback
4 IOP memory disturbance

13-16 00 IO has not responded
01 no response
02 Loopback defect
33002515 02/2017 155

PLCSTAT
RIO status (RIO_STAT) for Quantum

General information
NOTE: The information corresponds to status table words 12 to 171 in the PLC status dialog.
The words show the I/O module function status.
Five words are reserved for each of the maximum 32 I/O stations. Each word corresponds to one
of maximal 2 possible module racks in each I/O station.

Function display for Quantum hardware
Each of the module racks for Quantum hardware can contain up to 15 I/O modules (except for the
first rack which contains a maximum 14 I/O modules). Bit 1... 16 in each word show the
corresponding I/O module function display in the racks.

I/O module function status
Bit allocation:

Conditions for a correct function display
Four conditions must be fulfilled if an I/O module can give a correct function display:
 The data traffic of the slot has to be monitored.
 The slot must be valid for the inserted module.
 Valid communication must be established between the module and the RIO interface at RIO

stations.
 Valid communication must be established between the I/O processor in the PLC and the RIO

interface at the RIO station.

Bit Allocation
1 Slot 1
2 Slot 2
... ...
16 Slot 16
156 33002515 02/2017

PLCSTAT
Status words for the MMI user controllers
The status of the 32 element button controllers and PanelMate units in a RIO network can also be
monitored with an I/O function status word. The button controllers are located on slot 4 in a I/O rack
and can be monitored at bit 4 of the corresponding status word. A PanelMate on RIO is located on
slot 1 in module rack 1 of the I/O station and can be monitored at bit 1 of the first status word for
the I/O station.
NOTE: The ASCII keyboard communication status can be monitored with the error numbers in the
ASCII read/write instructions.
33002515 02/2017 157

PLCSTAT
DIO status (DIO_STAT)

General information
NOTE: The information corresponds to status table words 172 to 277 in the PLC status dialog.
The words contain the I/O communication status (DIO status) Words 1 to 10 are global status
words. Of the remaining 96 words, three words are allocated to each of the up to 32 I/O stations.
word1 saves the switch on error numbers. This word is always 0 when the system is running. If an
error occurs, the PLC does not start but generates a PLC stop status (word5 from PLC_STAT).

The conditions are true when the bits are set to 1.

Switch on error numbers (DIOSTATE word1)
The conditions are true when the bits are set to 1.
Switch on error numbers:

Code Error Meaning (location of error)
01 BADTCLEN Traffic cop length
02 BADLNKNUM RIO link number
03 BADNUMDPS I/O station number in traffic cop
04 BADTCSUM Traffic cop checksum
10 BADDDLEN I/O station descriptor length
11 BADDRPNUM I/O station number
12 BADHUPTIM I/O station stop time
13 BADASCNUM ASCII port number
14 BADNUMODS Module number in I/O station
15 PRECONDRP I/O station is already configured
16 PRECONPRT Port is already configured
17 TOOMNYOUT More than 1024 output locations
18 TOOMNYINS More than 1024 input points
20 BADSLTNUM Module slot address
21 BADRCKNUM Rack address
22 BADOUTBC Number of output bytes
23 BADINBC Number of input bytes
25 BADRF1MAP First reference number
26 BADRF2MAP Second reference number
27 NOBYTES No input or output bytes
28 BADDISMAP I/O marker bit not at 16 bit limit
158 33002515 02/2017

PLCSTAT
Status of cable A (DIOSTATE: word2, word3, word4)
Bit allocation for word2:

Bit allocation for word3:

Bit allocation for word4:

30 BADODDOUT Unmated, odd output module
31 BADODDIN Unmated, odd input module
32 BADODDREF Unmated odd module reference
33 BAD3X1XRF 1x-reference after 3x-register
34 BADDMYMOD Dummy module reference already in use
35 NOT3XDMY 3x-module is not a dummy module
36 NOT4XDMY 4x-module is not a dummy module
40 DMYREAL1X Dummy module, then real 1x-module
41 REALDMY1X Real, then 1x-dummy module
42 DMYREAL3X Dummy module, then real 3x-module
43 REALDMY3X Real, then 3x-dummy module

Code Error Meaning (location of error)

Bit Allocation
1 - 8 Counts frame fields

9 - 16 Counts DMA receiver overflows

Bit Allocation
1 - 8 Counts receiver errors

9 - 16 Counts I/O station receiver failures

Bit Allocation
1 1 = frame too short
2 1 = no frame end
33002515 02/2017 159

PLCSTAT
Status of cable B (DIOSTATE: word5, word6, word7)
Bit allocation for word5:

Bit allocation for word6:

Bit allocation for word7:

13 1 = CRC error
14 1 = alignment error
15 1 = overflow error

Bit Allocation

Bit Allocation
1 - 8 Counts frame fields

9 - 16 Counts DMA receiver overflows

Bit Allocation
1 - 8 Counts receiver errors

9 - 16 Counts I/O station receiver failures

Bit Allocation
1 1 = frame too short
2 1 = no frame end

13 1 = CRC error
14 1 = alignment error
15 1 = overflow error
160 33002515 02/2017

PLCSTAT
Global communication status (DIOSTATE: word8)
The conditions are true when the bits are set to 1.
Bit allocation for word8:

Global cumulative error counter for cable A (DIOSTATE: word9)
The conditions are true when the bits are set to 1.
Bit allocation for word9:

Global cumulative error counter for cable B(DIOSTATE: word10)
The conditions are true when the bits are set to 1.
Bit allocation for word10:

Bit Allocation
1 Comm. function display
2 Cable A status
3 Cable B status

5 - 8 Communication counter lost
9 - 16 Cumulative repetition counter

Bit Allocation
1 - 8 Counts recognized errors

9 - 16 Counts zero responses

Bit Allocation
1 - 8 Counts recognized errors

9 - 16 Counts zero responses
33002515 02/2017 161

PLCSTAT
RIO status (DIOSTATE: word11 to word106)
Words 11 to 106 are used to describe the RIO station status, three status words are planned for
each I/O station.
The first word in each group of three shows the communication status for the corresponding I/O

station:

The second word in each group of three is the cumulative I/O station error counter at cable A for
the corresponding I/O station:

The third word in each group of three is the cumulative I/O station error counter at cable B for the
corresponding I/O station:

NOTE: For PLCs where the I/O station 1 is reserved for the local I/O, words word11 to word13
are allocated as follows:

Bit Allocation
1 Communication health
2 Cable A status
3 Cable B status

5 - 8 Counter for lost communications
9 - 16 Cumulative repetition counter

Bit Allocation
1 - 8 Minimum one error in words 2 to 4

9 - 16 Counts zero responses

Bit Allocation
1 - 8 Minimum one error in words 5 to 7

9 - 16 Counts zero responses
162 33002515 02/2017

PLCSTAT
word11 shows the global I/O station status:

word12 is used as a 16 bit I/O bus error counter.

word13 is used as a 16 bit I/O repetition counter.

Bit Allocation
1 All modules OK

9 - 16 Counts, how often a module is regarded as not OK, counter overflow is at 255
33002515 02/2017 163

PLCSTAT
164 33002515 02/2017

Unity Pro
READREG
33002515 02/2017
READREG: Read register

Chapter 16
READREG: Read register

Introduction
This chapter describes the READREG block.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Description 166
Mode of Functioning 169
Parameter description 170
33002515 02/2017 165

READREG
Description

Function description
With a rising edge at the REQ input, this function block reads a register area from an addressed
slave via Modbus Plus.
EN and ENO can be configured as additional parameters.

NOTE: When programming a READREG function, you must be familiar with the routing procedures
used by your network. Modbus Plus routing path structures are described in detail in the Modbus
Plus Network Planning and Installation Guide (see page 11).
NOTE: This function block only supports the local Modbus Plus interface (no NOM).
If using a NOM, work with the CREAD_REG block from the communication block library.

NOTE: This function block does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, use the CREAD_REG block from the communication
block library.
NOTE: Several copies of this function block can be used in the program. However, multiple
instancing of these copies is not possible.

Representation in FBD
Representation:
166 33002515 02/2017

READREG
Representation in LD
Representation:

Representation in IL
Representation:
CAL READREG_Instance (REQ:=StartReadOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode)

Representation in ST
Representation:
READREG_Instance (REQ:=StartReadOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode;
33002515 02/2017 167

READREG
Parameter description
Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameter Data type Meaning
REQ BOOL With a rising edge at the REQ input, this function

block reads a register area from an addressed slave
via Modbus Plus.

NODEADDR INT Device address within the target segment
ROUTPATH DINT Routing path to target segment
SLAVEREG DINT Offset address of the first 4x register in the slave to

be read from
NO_REG INT Number of registers to be read from slave

Parameters Data type Meaning
REG_READ ANY_ARRAY_WORD Writing data

(For the file to be read a data structure must be
declared as a located variable.)

Parameters Data type Meaning
NDR BOOL Set to 1 for one cycle after reading new data
ERROR BOOL Set to 1 for one scan in case of error
STATUS WORD Error Code
168 33002515 02/2017

READREG
Mode of Functioning

Function mode of READREG_DFB blocks
Although a large number of READREG function blocks can be programmed, only four read
operations may be active at the same time. It makes no difference whether these operations are
performed using this function block or others (e.g. MBP_MSTR, CREAD_REG). All function blocks use
one data transaction path and require multiple cycles to complete a task. The status signals NDR
and ERROR report the function block state to the user program.

The complete routing information must be separated into two parts:
 in the NODEADDR of the destination node (regardless of whether it is located in the local segment

or in another segment) and
 the routing path, in case there is a link via bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit information
units. It is not necessary to use "00" extensions (e.g. both routing paths 4711 and 47110000 are
valid, for NODEADDR 34 the result is destination address 47.11.34.00.00).
33002515 02/2017 169

READREG
Parameter description

REQ

A rising edge triggers the read transaction.
The parameter can be specified as an address, located variable, unlocated variable or literal.

NODEADDR

Identifies the node address within the target segment.
The parameter can be specified as an address, located variable, unlocated variable or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run from 01 64 (see
Mode of Functioning, page 169). If the slave resides in the local network segment, ROUTPATH must
be set to "0" or must be left unconnected.
The parameter can be specified as an address, located variable, unlocated variable or literal.

SLAVEREG

Start of the area in the addressed slave from which the source data is read. The source area
always resides within the 4x register area. SLAVEREG expects the source reference as offset within
the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the variables or value of the
literal) = 40059).
The parameter can be specified as an address, located variable, unlocated variable or literal.

NO_REG

Number of registers to be read from slave processor (1 ... 100).
The parameter can be specified as an address, located variable, unlocated variable or literal.

NDR

Transition to ON state for one program cycle signifies receipt of new data ready to be processed.
The parameter can be specified as an address, located variable or unlocated variable.

ERROR

Transition to ON state for one program cycle signifies detection of a new error.
The parameter can be specified as an address, located variable or unlocated variable.
170 33002515 02/2017

READREG
STATUS

Error code, see Modbus Plus Error Codes, page 123
The parameter can be specified as an address, located variable or unlocated variable.

REG_READ

An ANY_ARRAY_WORD that is the same size as the requested transmission must be agreed upon
(≥ NO_REG) for this parameter. The name of this array is defined as a parameter. If the array is
defined too small, then only the amount of data is transmitted that is present in the array.
The parameter must be defined as a located variable.
33002515 02/2017 171

READREG
172 33002515 02/2017

Unity Pro
RIOSTAT
33002515 02/2017
RIOSTAT: Module function status (RIO)

Chapter 17
RIOSTAT: Module function status (RIO)

Description

Function description
This function block provides the function status for I/O modules of an I/O station (local/remote I/O).
Quantum I/O or 800 I/O can be used.
An output STATUSx is allocated to each rack. Each module (slot) of this rack is characterized by a
bit of the corresponding STATUSx output. The bit on the far left-hand side in STATUSx corresponds
to the slot on the far left-hand side of the rack x.
Using STATUS1 to STATUS5:
 Quantum I/O

There is only one rack for an I/O station, e.g. only STATUS1 is used.
 800 I/O

There can be up to 5 racks for an I/O station, e.g. STATUS1 corresponds to module rack 1,
STATUS5 corresponds to module rack 5.

NOTE: If a module on the module rack has been configured and works correctly, the corresponding
bit is set to "1".
EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:
33002515 02/2017 173

RIOSTAT
Representation in LD
Representation:

Representation in IL
Representation:
CAL RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
 STATUS1=>StatusBitPatternRack1,
 STATUS2=>StatusBitPatternRack2,
 STATUS3=>StatusBitPatternRack3,
 STATUS4=>StatusBitPatternRack4,
 STATUS5=>StatusBitPatternRack5)

Representation in ST
Representation:
RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
 STATUS1=>StatusBitPatternRack1,
 STATUS2=>StatusBitPatternRack2,
 STATUS3=>StatusBitPatternRack3,
 STATUS4=>StatusBitPatternRack4,
 STATUS5=>StatusBitPatternRack5) ;
174 33002515 02/2017

RIOSTAT
Parameter description
Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning
DROP UINT Local/remote I/O station no. (1...32)

Parameters Data type Meaning
STATUS1 WORD Module rack 1 status bit pattern
STATUS2 WORD Module rack 2 status bit pattern (800 I/O only)
...
STATUS5 WORD Module rack 5 status bit pattern (800 I/O only)
33002515 02/2017 175

RIOSTAT
176 33002515 02/2017

Unity Pro
SET_TOD
33002515 02/2017
SET_TOD: Setting the hardware clock (Time Of Day)

Chapter 18
SET_TOD: Setting the hardware clock (Time Of Day)

Description

Function description
This function block searches (together with the other function blocks in the HSBY group) the
configuration of the respective PLC for the necessary components. These components always
refer to the hardware actually connected.
Therefore the correct functioning of this function block on the simulators cannot be guaranteed.
The function block sets the hardware system clock, if the corresponding registers are provided
within this configuration. If these registers are not present, the TOD_CNF output is set to "0".

The function block reads the input values on the S_PULSE input at a rising edge and transfers them
to the hardware clock.
For all input values:
 If the value exceeds the specified maximum value, the maximum is used.
 If the value falls below the specified minimum value, the minimum is used.
EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:
33002515 02/2017 177

SET_TOD
Representation in LD
Representation:

Representation in IL
Representation:
CAL SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
 D_WEEK:=DayOfWeek, MONTH:=Byte_variable2,
 DAY:=Byte_variable3, YEAR:=Byte_variable4,
 HOUR:=Byte_variable5, MINUTE:=Byte_variable6,
 SECOND:=Byte_variable7, TOD_CNF=>ClockReady)

Representation in ST
Representation:
SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
 D_WEEK:=DayOfWeek, MONTH:=Byte_variable2,
 DAY:=Byte_variable3, YEAR:=Byte_variable4,
 HOUR:=Byte_variable5, MINUTE:=Byte_variable6,
 SECOND:=Byte_variable7, TOD_CNF=>ClockReady) ;
178 33002515 02/2017

SET_TOD
Parameter description
Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning
S_PULSE BOOL "0 -> 1" = the input values are accepted and written

into the clock.
D_WEEK BYTE Day of week, 1 = Sunday 7 = Saturday
MONTH BYTE Month 1..12
DAY BYTE Day 1..31
YEAR BYTE Year 0..99
HOUR BYTE Hour 0..23
MINUTE BYTE Minute 0..59
SECOND BYTE Second 0..59

Parameters Data type Meaning
TOD_CNF BOOL "1" = %MW register (4x) for the hardware system

clock was found and the clock is operational.
"0" = Time is currently being set or hardware clock
was not found.
33002515 02/2017 179

SET_TOD
180 33002515 02/2017

Unity Pro
WORD_AS_BYTE_DFB
33002515 02/2017
WORD_AS_BYTE_DFB: Type conversion

Chapter 19
WORD_AS_BYTE_DFB: Type conversion

Description

Function description
This derived function block converts one input word from the WORD data type to 2 output values of
the BYTE data type.

The individual bytes of the word at the input are assigned to the outputs according to the output
names.
EN and ENO can be configured as additional parameters.

Representation in FBD
Representation:

Representation in LD
Representation:
33002515 02/2017 181

WORD_AS_BYTE_DFB
Representation in IL
Representation:
CAL WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable,
 LOW=>LowByte, HIGH=>HighByte)

Representation in ST
Representation:
WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable,
 LOW=>LowByte, HIGH=>HighByte) ;

Parameter description
Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning
IN WORD Input

Parameter Data type Meaning
LOW BYTE least significant byte
HIGH BYTE most significant byte
182 33002515 02/2017

Unity Pro
WORD_TO_BIT_DFB
33002515 02/2017
WORD_TO_BIT_DFB: Type conversion

Chapter 20
WORD_TO_BIT_DFB: Type conversion

Description

Function description
This derived function block converts one input word from the WORD data type to 16 output values
of the BOOL data type.

The individual bits of the word at the input are assigned to the outputs according to the output
names.

EN and ENO can be configured as additional parameters.
33002515 02/2017 183

WORD_TO_BIT_DFB
Representation in FBD
Representation:

Representation in LD
Representation:
184 33002515 02/2017

WORD_TO_BIT_DFB
Representation in IL
Representation:
CAL WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
 BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
 BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
 BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
 BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15, BIT15=>Bit16)

Representation in ST
Representation:
WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
 BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
 BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
 BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
 BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15,
 BIT15=>Bit16) ;

Parameter description
Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning
IN WORD Input

Parameter Data type Meaning
BIT0 BOOL Output BIT0
BIT1 BOOL Output BIT1

: : :
BIT15 BOOL Output BIT15
33002515 02/2017 185

WORD_TO_BIT_DFB
186 33002515 02/2017

Unity Pro
WRITEREG
33002515 02/2017
WRITEREG: Write register

Chapter 21
WRITEREG: Write register

Introduction
This chapter describes the WRITEREG block.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Description 188
Mode of Functioning 191
Parameter description 192
33002515 02/2017 187

WRITEREG
Description

Function description
With a rising edge at the REQ input, this function block writes a register area from the PLC to an
addressed slave via Modbus Plus.
EN and ENO can be configured as additional parameters.

NOTE: When programming a WRITEREG function, you must be familiar with the routing procedures
used by your network. Modbus Plus routing path structures are described in detail in the Modbus
Plus Network Planning and Installation Guide (see page 11).
NOTE: This derived function block only supports the local Modbus Plus interface (no NOM).
If using a NOM, work with the WRITE_REG block from the communication block library.

NOTE: This derived function block also does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, use the WRITE_REG block from the communication
block library.
NOTE: Several copies of this function block can be used in the program. However, multiple
instancing of these copies is not possible.

Representation in FBD
Representation:
188 33002515 02/2017

WRITEREG
Representation in LD
Representation:

Representation in IL
Representation:
CAL WRITEREG_Instance (REQ:=StartWriteOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 DONE=>SetAfterWritingData,ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode)

Representation in ST
Representation:
WRITEREG_Instance (REQ:=StartWriteOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 DONE=>SetAfterWritingData,ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode) ;
33002515 02/2017 189

WRITEREG
Parameter description
Description of input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameter Data type Meaning
REQ BOOL With a rising edge at the REQ input, this function

block writes a register area from the PLC to an
addressed slave via Modbus Plus.

NODEADDR INT Device address within the target segment
ROUTPATH DINT Routing path to target segment
SLAVEREG DINT Offset address of the first 4x register in the slave to

be written to
NO_REG INT Number of registers to be written from slave

Parameters Data type Meaning
REG_WRIT ANY_ARRAY_WORD Source data field

(A data structure must be declared as a located
variable for the source file.)

Parameters Data type Meaning
DONE BOOL Set to 1 for one scan after writing data
ERROR BOOL Set to 1 for one scan in case of error
STATUS WORD Error Code
190 33002515 02/2017

WRITEREG
Mode of Functioning

Function mode of WRITEREG blocks
Although a large number of WRITEREG function blocks can be programmed, only four write
operations may be active at the same time. It makes no difference whether these operations are
performed using this function block or others (e.g. MBP_MSTR, CWRITE_REG). All function blocks
use one data transaction path and require multiple cycles to complete a task.
If several WRITEREG function blocks are used within an application, they must at least differ in the
values of their NO_REG or REG_WRIT parameters.

The status signals DONE and ERROR report the function block state to the user program.

The complete routing information must be separated into two parts:
 in the NODEADDR of the destination node (regardless of whether it is located in the local segment

or in another segment) and
 the routing path, in case there is a link via network bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit information
units. It is not necessary to use "00" extensions (e.g. both routing paths 4711 and 47110000 are
valid, for NODEADDR 34 the result is destination address 47.11.34.00.00).
33002515 02/2017 191

WRITEREG
Parameter description

REQ

A rising edge triggers the write transaction.
The parameter can be entered as an address, located variable, unlocated variable or literal.

NODEADDR

Identifies the node address within the target segment.
The parameter can be entered as an address, located variable, unlocated variable or literal.

ROUTPATH

Identifies the routing path to the target segment. The two-digit information units run from 01 64 (see
Mode of Functioning, page 191). If the slave resides in the local network segment, ROUTPATH must
be set to "0" or must be left unconnected.
The parameter can be entered as an address, located variable, unlocated variable or literal.

SLAVEREG

Start of the destination area in the addressed slave to which the source data is written. The
destination area always resides within the 4x register area. SLAVEREG expects the destination
address as an offset within the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the
variables or value of the literal) = 40059).
The parameter can be entered as an address, located variable, unlocated variable or literal.

NO_REG

Number of registers to be written to slave processor (1 ... 100).
The parameter can be entered as an address, located variable, unlocated variable or literal.

REG_WRIT

An ANY_ARRAY_WORD that is the same size as the planned transmission must be agreed upon (
≥ NO_REG) for this parameter. The name of this array is defined as a parameter. If the array is
defined too small, then only the amount of data is transmitted that is present in the array.
The parameter must be defined as a located variable.

DONE

Transition to ON state for one program scan signifies data have been transferred.
The parameter can be entered as an address, located variable or unlocated variable.
192 33002515 02/2017

WRITEREG
ERROR

Transition to ON state for one program cycle signifies detection of a new error.
The parameter can be specified as an address, located variable or unlocated variable.

STATUS

Error code, see Modbus Plus Error Codes, page 123
The parameter can be specified as an address, located variable or unlocated variable.
33002515 02/2017 193

WRITEREG
194 33002515 02/2017

Unity Pro

33002515 02/2017
Appendices
Overview
This section contains the appendicies.

What Is in This Appendix?
The appendix contains the following chapters:

Chapter Chapter Name Page
A FAQ Build Errors 197
B FAQ Conversion Errors 221
33002515 02/2017 195

196 33002515 02/2017

Unity Pro
FAQ Build Errors
33002515 02/2017
FAQ Build Errors

Appendix A
FAQ Build Errors

Overview
This chapter includes information on build errors.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General 198
Object Link Creation Error 199
Object Must be Connected to a Successor 200
Link Together with Variable isn't Allowed 202
Data Type 'xxxx' Expected 203
Empty DFB to Replace Obsolete EFB 208
Undefined Symbol 'xxxx' 209
Call of Non-Function Block 210
Parameter 'xxxx' Has to Be Assigned 213
' xxxx' Is Not a Parameter of 'yyyy' 214
DDT Component Is Missing 215
EHC Parameters Out of Range 216
Not a Valid Address 217
140 NOG 111 00 Configuration Not Converted 218
E1163 Use of Unconfigured Direct Address 219
The Instance Is Located on an Address That Is Not Configured 220
33002515 02/2017 197

FAQ Build Errors
General

Overview
After converting a Concept application, the Rebuild All Menu should be invoked.
If the application is not built with this command, all error messages in the build output window
should be examined by double-clicking on them. This opens the section with the origin of the
problem.
The whole section should be compared to the original in Concept and functional differences should
be manually corrected in the converted application.

Example
Examples for messages:
 {SCADA_Info : [MAST]} : (r: 172, c: 4) E1218 Object must be connected

to a successor, at least the Right-Power-Rail
 {FC124_Visual_call_up_part_3 : [MAST]} : (r: 31, c: 5) E1189 converter

error: 'Object Link creation error (Link pin can not be located in
original object) : Link to pin (linkSource: row=30, col=4, Object=,
Pin=OUT1.) can not be created. Object has not been created during
import.'

Potential Messages
Short forms of potential messages are given in the following list, which are linked to explanation
details:
 Object Link Creation Error, page 199
 Object Must be Connected to a Successor, page 200
 Link Together with Variable isn't Allowed, page 202
 Data Type 'xxxx' Expected, page 203
 Empty DFB to Replace Obsolete EFB, page 208
 Undefined Symbol 'xxxx', page 209
 Call of Non-Function Block, page 210
 Parameter 'xxxx' Has to Be Assigned, page 213
 ' xxxx' Is Not a Parameter of 'yyyy', page 214
 DDT Component Is Missing, page 215
 EHC Parameters Out of Range, page 216
 Not a Valid Address, page 217
198 33002515 02/2017

FAQ Build Errors
Object Link Creation Error

Cause
One reason of this message, which occurs during import already and when analyzing, can be that
the converter does not have implemented the substituion of the extensible diagnostic blocks with
dual FBs.

Explanation
D_GRP and D_PRE both need an AND block attached to their IN input. This additional AND has
to be implemented so, thatit gets all inputs of the former extensible area. Add the missing block by
hand.

Example
{_9_TIME : [MAST]} : (r: 2, c: 1) E1189 converter error: 'Object Link
creation error (Link pin can not be located in original object) : Link
to pin (linkSource: row=1, col=0, Object=FBI_9_2_DRAW, Pin=OUT.) can not
be created. Object has not been created during import.'

{_9_TIME : [MAST]} : (r: 2, c: 1) E1002 syntax error

{_9_TIME : [MAST]} : (r: 6, c: 13) E1189 converter error: 'Object Link
creation error (Link pin can not be located in original object) : Link
to pin (linkDestination: row=5, col=12, Object=FBI_9_2, Pin=.) can not
be created. Object has not been created during import.'

{_9_TIME : [MAST]} : (r: 6, c: 13) E1002 syntax error

Figure
33002515 02/2017 199

FAQ Build Errors
Object Must be Connected to a Successor

Cause
A message as follows, can have its reason in a Concept 2.1 LD bug:
{TANKVLVS <DFB> : [TVALVE]} : (r: 93, c: 3) E1218 Object must be connected
to a successor, at least the Right-Power-Rail

When connecting contacts to an OR (a vertical short), it sometimes happens that the intended first
output contact is connected to the input of the OR.
Concept even shows this in its graphics with a small dot at the input of the OR:

In this case, the ALARM coil is connected ONLY to the ontact V01ALARM. The OR output is
connected to NOTHING.
200 33002515 02/2017

FAQ Build Errors
Consequently, the Unity V1.1 converter translates this to:
33002515 02/2017 201

FAQ Build Errors
Link Together with Variable isn't Allowed

Overview
This error is reported in connection with INOUT pins.

Example

Solution
Delete the link and insert the variable to the destination parameter of the link.
202 33002515 02/2017

FAQ Build Errors
Data Type 'xxxx' Expected

Example

Solution
Replace used data types according to the required type.
The following picture shows the error correction for the 115.1 function block, where the type of
output (MW100) has been modified to the type used for the input (REAL).

The Concept converter of V1.0 estimates the type from the address and does not take the actual
type into account. This is subject to a later version.
33002515 02/2017 203

FAQ Build Errors
Retyping EFB Parameter
Another reason of this message can be e.g., that the EFB parameter has been retyped to
ANY_ARRAY_WORD. See also Parameter type changed.

Combinations of Variables, Variable Instances and Parameters from Concept
Coming from Concept are the following combinations of variables, variable instances and
parameters (pins):

NOTE: So there are three + n different types possible to be declared for a register variable in
Concept (1(2=>n),4,6) .

Element Description
Variable Declarations The variable declaration has a type of its own and can have a register

 Several variable declarations can have individual types and the same
register

CP_GV1 "Symbol" 4:100 DPM_Time INIT: FALSE 0 EXP: FALSE
RET: FALSE READONLY: FALSE MAS: FALSE TEXT:
CP_GV1 "SymbolElem" 4:100 IEC_INT_ID INIT: FALSE 0 EXP:
FALSE RET: FALSE READONLY: FALSE MAS: FALSE TEXT:

Varaiable Instances Variable INSTANCES coming with a SYMBOL have no own type and
no register and use the type of the necessary variable declaration.

CP_GVI NAMED_VAR: "SymbolElem" 10 9 FP_IO_OUTPUT
 The variable instance can come with a register, in this case it has a type

of its own in the instance declaration and no symbol.
CP_GVI REG_VAR: 4:100 27 16 FP_IO_INPUT DPM_Time EXP:
FALSE RET: TRUE MAS: FALSE
 It is not necessary to have a variable declaration for register variable

instances:
 Textual anonymous declarations (AT %MWxx:DDT;) are equivalent

to variable instance declarations with register and declare the type
as well.

 The type is forced to be the same as an existing variable
declaration. If they are conflicting, the declaration is refused in
Concept.

CP__ST AT %QW102: REAL;

Parameters The pin a variable instance is attached to has a type of its own, which is
not necessarily the same as that of the variable instance.
It cannot be changed and can be generic.
VS_FRM "IN1" HIDE POSL 2 FP_IO_INPUT FP_INP_NORMAL
FP_LOC_OUTSIDE INT TEXT:
VS_FRM "IN" HIDE POSL 2 FP_IO_INPUT FP_INP_NORMAL
FP_LOC_OUTSIDE ANY TEXT:
204 33002515 02/2017

FAQ Build Errors
Type Declaration in Unity
Unity accepts one type declared with a symbol associated to a register. If the register is used
directly, only its default type is assumed.
To generate code, the type and size of a variable attached to a pin must be determined to one type.
Different pins might have different types.

Register Variable Instance
If there is a register variable instance with its type and additionally a variable declaration with a
different type and the same register, Concept generates code according to the type supplied with
the register or with the symbol individual for each pin.

Default Type
Unity knows only a default type for registers. If this type is to be changed, a variable with a symbol
must be declared to carry the type, but two symbols with different types for one register are not
accepted.
Unity does not import the second variable, if this application is imported.

Behaviour of Variables, Variable Instances and Parameters in Unity

If... And There Is... Then...
symbols are used with a variable
instance

- the type declared in the
declaration with the symbol is
to be used

 the type of a possibly present
register variable instance is not

a register variable with a type
different from the default is to be
used

already a variable declaration with
the same register, but a different type

an error message for this
impossibility is issued.

a register variable with a type
different from the default is to be
used

a variable declaration with the same
register with the same type

its symbol is to be used instead of
the direct address.

a register variable with a type
different from the default is to be
used

no variable declaration with the same
register

an artificial symbol is to be
declared and used instead of the
direct address.

a pin in the Unity template has the
type ANY_ARRAY_WORD

- an attached register variable
could get the type ARRAY[0..0]
OF WORD, if it previously had the
type WORD.

the register is used also at pins
with the type WORD

- the register gets the index [0]
attached.
33002515 02/2017 205

FAQ Build Errors
Other Type Mismatch Cases
Other type mismatch cases are reported with a build(=analyze) message and left to be resolved
by the user.

Word Arrays in Communication Blocks
Communication blocks have Word arrays as parameters, whic are defined in Concept with a
reference to the first Word only.
The size of the array is often given by the content of a variable, which is defined during run-time.
So the size cannot be determined by the converter.
The user must determine the maximum size and declare the array accordingly by himself.

Example from Concept

Step Action
1

All array members appear as single variables. In Unity, they must be combined to an array.
2 This is prepared by the converter by declaring a variable with the range of [0..0].
206 33002515 02/2017

FAQ Build Errors
3 This leads to a set of analyze messages to make the user aware of the correction need. In this case, the
correction of the user should look like:

4 The source code related to this is in this case:
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 2, c: 2) E1063 call of non-function block
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 4, c: 29) E1067 'Q' is not a member of
'SECT_CTRL'

Step Action
33002515 02/2017 207

FAQ Build Errors
Empty DFB to Replace Obsolete EFB

Cause
A few standard EFB have not been ported from Concept to Unity.
If the Converter finds one of them, it inserts an Empty DFB with the same parameters as the
original to allow building of the application and to give the possibility to the user to substitute the
original with code of his own.

Solution
Insert the code into the body of the empty DFB, which contains the command to generate a
message like the following in it:
{S1 : [REAL_W2]} : (r: 1, c: 2) E1189 converter error: 'Empty DFB to
replace obsolete EFB - fill by user'

The command for the message has to be deleted, if valid code has been filled into the DFB body
to allow building of the application.
NOTE: Because the ANY type is not allowed on DFBs in Unity, an additional problem occurs if this
type has been used in the substituted EFB (e.g. XXMIT EFB).

Customer Defined EFBs
Customer defined EFBs are not converted. If you want to convert an application using Customer
defined EFBs, get in contact with Schneider support.
208 33002515 02/2017

FAQ Build Errors
Undefined Symbol 'xxxx'

Wrong SFC Section Name

Wrong Instance Name

Explanation This message is given sometimes in conjunction with the block SFCCNTRL.
The message means, that the SFC section name, which has to be attached to the
CHARTREF input is not the name of an existing SFC section inside of the current application.

Solution Create the according section and the message disappears.

Explanation Another reason of such a message can be, that a Concept function block now in Unity is
a function or a procedure.
The converter does conversion work in the textual languages ST and IL half-automatic in
the case of this incompatibility. The instance name of Concept is removed and substituted
by the type name, also for addressing outputs, which is then an illegal syntax:
LOOKUP_TABLE1(X := ODT,
XiYi1 := -30.0, XiYi2 := PARA.p1,
XiYi3 := -20.0, XiYi4 := PARA.p2,
XiYi5 := -10.0, XiYi6 := PARA.p3,
XiYi7 := 0.0, XiYi8 := PARA.p4,
XiYi9 := 10.0, XiYi10:= PARA.p5,
XiYi11:= 20.0, XiYi12:= PARA.p6);
OUT := LOOKUP_TABLE1.Y;

Solution The last line must be corrected manually. Using the output assign operator, this statement
must be changed and moved inside the call parentheses:
LOOKUP_TABLE1(X := ODT,
XiYi1 := -30.0, XiYi2 := PARA.p1,
XiYi3 := -20.0, XiYi4 := PARA.p2,
XiYi5 := -10.0, XiYi6 := PARA.p3,
XiYi7 := 0.0, XiYi8 := PARA.p4,
XiYi9 := 10.0, XiYi10:= PARA.p5,
XiYi11:= 20.0, XiYi12:= PARA.p6,
Y=>OUT);
33002515 02/2017 209

FAQ Build Errors
Call of Non-Function Block

Cause
This message can appear, when a Concept function block now in Unity is a function or a procedure.
The converter removes the instance name of the Concept-block and substitutes it with the type
name and moves assignments of outputs inside the invocation parentheses.
For the blocks GET_BIT and SET_BIT, the treatment does not completely apply. During analysis,
messages occur:
{INPUTS : [MAST]} : (r: 7, c: 4) E1063 call of non-function block

The function names remain marked as erroneous after conversion, because the functions are
converted with the procedure syntax in ST, not with the needed function syntax, as the corrected
version shows. Also, the converter has dropped the indices for the result variable of GET_BIT.

Example

Original Concept Codes After Conversion Corrected Version
VAR
INPUT_WORD : GET_BIT;
END_VAR;

FOR I_BASE := 1 TO 20 DO
FOR I_POINT := 1 TO 16 DO
INPUT_WORD
(IN:=IO_SCAN_IN_WORD[I_BA
SE], NO:=I_POINT);
INPUT[I_BASE,I_POINT] :=
INPUT_WORD.RES;
END_FOR;
END_FOR;

FOR I_BASE := 1 TO 20 DO
FOR I_POINT := 1 TO 16 DO
GET_BIT(IN:=IO_SCAN_IN_WORD[
I_BASE],
NO:=I_POINT,
RES => INPUT);
;
END_FOR;

FOR I_BASE := 1 TO 20 DO
FOR I_POINT := 1 TO 16 DO
INPUT[I_BASE,I_POINT]:=
GET_BIT(IN:=IO_SCAN_IN_WORD[
I_BASE],
NO:=I_POINT);
END_FOR;
END_FOR;

VAR
OUTPUT_WORD : SET_BITX;
END_VAR;

FOR O_BASE := 1 TO 20 DO
FOR O_POINT := 1 TO 16 DO
OUTPUT_WORD (RES :=
IO_SCAN_OUT_WORD[O_BASE],
IN :=
OUTPUT[O_BASE,O_POINT],
NO := O_POINT);
END_FOR;
END_FOR;

FOR O_BASE := 1 TO 20 DO
FOR O_POINT := 1 TO 16 DO
SET_BIT(RES :=
IO_SCAN_OUT_WORD[O_BASE],
IN := OUTPUT[O_BASE,O_POINT],
NO := O_POINT);
END_FOR;
END_FOR;

FOR O_BASE := 1 TO 20 DO
FOR O_POINT := 1 TO 16 DO
IO_SCAN_OUT_WORD[O_BASE]:=
SET_BIT(IN :=
OUTPUT[O_BASE,O_POINT], NO :=
O_POINT);
END_FOR;
END_FOR;
210 33002515 02/2017

FAQ Build Errors
Conjunction With Other Messages
This message can appear in conjunction with other messages:
 {RESET_CONV <DFB> : [RC_HSK_1]} : (r: 2, c: 2) E1063 call of non-

function block
 {RESET_CONV <DFB> : [RC_HSK_1]} : (r: 4, c: 29) E1067 'Q' is not a

member of 'SECT_CTRL'

Related Source Code
The source code related to this is in this case:
 RESET_CONV147(IN := (CTRL.TB.RC_INI AND V_SYNCHRO), PT := t#500ms);
 T_CONVRESET := RESET_CONV147.Q;

Double Use of the Instance Name
Unity Pro associates the instance name to the derived data type SECT_CTRL, even though it is
intended to address a timer. This usually happens, if the Concept application used the instance
name twice. To find this out, proceed as follows:

Step Action
1 Open the Concept .asc export file, and search the instance name without the

figures at the end with a search command of the text editor.
Result: In this case here we find:
STR_RCI: (* RC Eingänge = SPS Ausgänge *)
STRUCT
AUTO : BOOL ; (* Betriebsart Automatik / Hand *)
AXIS_EN : BOOL ; (* Achsen angewählt *)
Z_UP : BOOL ; (* Z-Achse auf *)
RESET_PROG : BOOL ; (* Programm abbrechen *)
RESET_CONV : BOOL ; (* Förderer synchronisieren *)

2 The line introduction...STR has been omitted.
CP_GVS "RESET_CONV" SECT_CTRL INIT: FALSE 0 EXP: FALSE RET:
TRUE READONLY: FALSE MAS: FALSE TEXT:
CP_SEC "RESET_CONV" SECTK_F_SECTION LANG_ST SVB: FALSE ID:
27 EXEC: 26 TEXT:
CP__ST
CP__ST VAR
CP__ST RESET_CONV : TP; (* Impuls Reset Conveyor *)
The same name has been used as a structure component name, a section name
with its control variable, and for a "TP" timer instance.

3 Change the type of the instance in the Data editor to "TP".
33002515 02/2017 211

FAQ Build Errors
Substitute Procedures in ST/IL
Some EFBs from Concept are implemented as procedures in Unity Pro without instance names.
Open the Conversion Settings tab via Tools → Options in Unity Pro to enable/disable the
Substitute Procedures in ST/IL check box before converting.
 When this checkbox is enabled, the instance name of the Concept call will be replaced with the

type name.
 When this checkbox is not enabled, a DFB will be created, which will then access the procedure.
212 33002515 02/2017

FAQ Build Errors
Parameter 'xxxx' Has to Be Assigned

Cause
For inputs, left open pins at blocks get an automatically generated variable with the approriate type.
For outputs, this is not done yet.
In the case of generic data types, it cannot be done easily.

Solution
In these cases the user still must declare appropriate variables and attach them to the left-open
pins.
33002515 02/2017 213

FAQ Build Errors
' xxxx' Is Not a Parameter of 'yyyy'

Cause
The diagnostic EFBs, which have been extensible in Concept, do not get the right calling syntax in
IL.
{_9_TIME : [MAST]} : (r: 43, c: 17) E1031 'IN1' is not a parameter of
function block 'GRP_DIA_9'

{_9_TIME : [MAST]} : (r: 44, c: 17) E1031 'IN2' is not a parameter of
function block 'GRP_DIA_9'

Solution
In the case of the in Concept extensible diagnostic EFBs, the extension can be done with a logical
AND function the output of which is tied to the single input of the diagnostic function. This is done
with the first three lines in the correction.
The used output must be processed by BOOL_TO_TIME, which is bypassed in the automatic
conversion and which is corrected in the last three lines.

Example

Original Concept Code After Conversion Corrected Version
CAL GRP_DIA_9 (ED
:=DUMMY_1_91,
DTIME :=IN92,
IN1 :=DUMMY_1_94,
IN2 :=DUMMY_1_96)
LD GRP_DIA_9.ERR
BOOL_TO_TIME
ST OUT90

CAL GRP_DIA_9 (ED
:=DUMMY_1_91,
DTIME :=IN92,
IN1 :=DUMMY_1_94,
IN2 :=DUMMY_1_96,
ERR => OUT90)
BOOL_TO_TIME

LD DUMMY_1_94
AND DUMMY_1_96
ST GRP_DIA_9.IN
CAL GRP_DIA_9 (ED
:=DUMMY_1_91,
DTIME :=IN92)
LD GRP_DIA_9.ERR
BOOL_TO_TIME
ST OUT90
214 33002515 02/2017

FAQ Build Errors
DDT Component Is Missing

Cause
Keywords may not be used as symbols of DDT components or as variable names. Such a case is
the name slot.

Solution
If DDT components are missing or import conflicts are imported, proceed as follows:

Step Action
1 Search for the occurrence of the name in the .asc file with another meaning.
2 Change the name for the conflicting meaning.
33002515 02/2017 215

FAQ Build Errors
EHC Parameters Out of Range

Cause
For the High speed counter module, parameter limits are not treated right.

Example

Parameter <OUTPUT START ADDRESS> out of range (Error with param 17)

Solution
Such Parameters must be manually corrected.
216 33002515 02/2017

FAQ Build Errors
Not a Valid Address

Cause
A message like the following one is generated at analyze time, if a Hot_Stand-By system is
incompletely defined.
Analyzing...

{Cpu (1.2) 140 CPU 671 60} : %MW0 is not a valid address in Quantum

Solution

Step Action
1 Open the local rack of the configuration and the CPU configuration itself and

select the Hot Stand-By tab of the CPU configuration.
2 In its lower part appear State Ram and Non Transfer area. Usually both the Start

and Length fiels both contain a Zero, directly passed through from the Concept
application.

3 To remove the error message, enter 1 into the start field.
33002515 02/2017 217

FAQ Build Errors
140 NOG 111 00 Configuration Not Converted

Concept
The 140 NOG 111 00 is used as a NOM in Concept.

Configuration Not Converted
The conversion creates also a NOM in Unity Pro but the I/O configuration gets lost.
218 33002515 02/2017

FAQ Build Errors
E1163 Use of Unconfigured Direct Address

Description
Address values configured in the legacy application are higher than the maximum allowed State
RAM.
NOTE: Quantum CPUs maximum value for %M 0x State RAM: 65280.
33002515 02/2017 219

FAQ Build Errors
The Instance Is Located on an Address That Is Not Configured

Solution
Reserve more memory words in the CPU State RAM.
220 33002515 02/2017

Unity Pro
FAQ Conversion Errors
33002515 02/2017
FAQ Conversion Errors

Appendix B
FAQ Conversion Errors

FAQ Conversion Errors

Overview
This section gives the list of keywords that must not be used to define object names (variables and
types of variables).
If a Concept application contains such variable or variable type names, the application cannot be
converted to Unity Pro.
The following message to be acknowledged by the user appear: Error in definition of located
variable: Keywords may not be used as variable names.

Keywords
The following lists gives the keywords in alphabetical order:
A
 Address
 AI_CONSTANT
 AI_SECTION
 AI_VARIABLEINST
 AI_VARIABLEINST_REG
 ANY
 AsciiMsg
 ATTRIBUTE
B
 BCD16
 BCD32
 BCD64
 BCD8
 BEGIN
 binData
 BOOL
 byte
33002515 02/2017 221

FAQ Conversion Errors
C
 CL_DFB
 CL_FRM
 CL_PLC
 COLUMN_WIDTH
 CONCEPT_
 CONCEPT_VERSION
 configImage
 configTable
 CP__IL
 CP__ST
 CP_ABR
 CP_ACT
 CP_AJN
 CP_APP
 CP_COM
 CP_CON
 CP_DBI
 CP_DFB
 CP_FBI
 CP_GEN
 CP_GV1
 CP_GV2
 CP_GV4
 CP_GVI
 CP_GVS
 CP_GVT
 CP_IFP
 CP_INV
 CP_JMP
 CP_LNK
 CP_OPT
 CP_PBR
 CP_PJN
 CP_PRG
 CP_PRI
 CP_PRO
 CP_PRP
 CP_SEC
 CP_STP
 CP_STR
 CP_TRN
222 33002515 02/2017

FAQ Conversion Errors
 CP_VRS
 CR_END
D
 DATE
 dint
 DisplayFormat
 dpMasterData
 dpSlaveData
 DRAW
 DropHead
 dropNumber
 DT
 DWORD
E
 END
 END_ENTRY
 END_RDE_TEMPLATE
 ENTRY
 EVN
 extType
F
 FALSE
 FBIPH_INPUT
 FBIPH_OUTPUT
 FP_IO_INOUTPUT
 FP_IO_INOUTPUT_COMP
 FP_IO_INPUT
 FP_IO_INPUT_COMP
 FP_IO_OUTPUT
 FP_IO_OUTPUT_COMP
G
 global
H
 headIndex
 HEIGHT
 HIDE
 HX_n
I
 ID_{Digit}+
 IEC_BCD16_ID
 IEC_BCD32_ID
33002515 02/2017 223

FAQ Conversion Errors
 IEC_BCD64_ID
 IEC_BCD8_ID
 IEC_BOOL_ID
 IEC_BYTE_ID
 IEC_DATE_ID
 IEC_DINT_ID
 IEC_DT_ID
 IEC_DWORD_ID
 IEC_INT_ID
 IEC_LINT_ID
 IEC_LREAL_ID
 IEC_LWORD_ID
 IEC_REAL_ID
 IEC_SINT_ID
 IEC_STRING_ID
 IEC_TIME_ID
 IEC_TOD_ID
 IEC_UDINT_ID
 IEC_UINT_ID
 IEC_ULINT_ID
 IEC_UNKNOWN_ID
 IEC_USINT_ID
 IEC_WORD_ID
 INIT
 inputBytes
 inputReference
 int
 INV
 IODrop
 IOModule
L
 LANG_FBD
 LANG_IL
 LANG_LD
 LANG_LL
 LANG_SFC
 LANG_ST
 LINT
 LL_INS
 LL_NET
 LL_NOD
 LL_REG
 LL_SON
224 33002515 02/2017

FAQ Conversion Errors
 LL_SRD
 LL_SRM
 LL_VAR
 local
 locInc
 LREAL
 LWORD
M
 macAddr
 MAS
 maxConstant
 modData
N
 NAMED_VAR
 nodeParam
O
 outputBytes
 outputReference
P
 pcHealthTimeout
 pcHoldLastValue
 PlcCnfDb
 PLCConfig
 plcName
 POSR
R
 rack
 RDE_TEMPLATE
 RDE_TEMPLATE_VERSION
 READONLY
 Real
 REG_VAR
 RET
 rs232Params
S
 scratchPad
 SECTK_F_SECTION
 SetValue
 SFC_STEP_INIT
 SFC_STEP_NORMAL
 SINT
33002515 02/2017 225

FAQ Conversion Errors
 SLOT
 STRING
 svcFile
T
 Tagname
 TEXT
 time
 TIMN
 TOD
U
 udint
 uint
 ULINT
 UNKNOWN
 USINT
V
 VAL
 Value
 VS_FFB
 VS_FRM
W
 WIDTH
 WINDOW_LOCATION
 WITHOUT_ATT
 WORD
226 33002515 02/2017

Unity Pro
Index
33002515 02/2017
Index
0-9
140 NOG 111 00 configuration

not converted, 218

A
address

not configured, 220
analyzing

projects, 51, 101
application behavior

changes, 87

B
build errors, 197
BYTE_TO_BIT_DFB, 113

C
Concept

conversion wizard, 17
Concept Converter - instructions

BYTE_TO_BIT_DFB, 113
CREADREG, 117
CWRITREG, 125
DINT_AS_WORD_DFB, 131
DIOSTAT, 133
GET_TOD, 135
LIMIT_IND_DFB, 139
LOOKUP_TABLE1_DFB, 143
PLCSTAT, 149
READREG, 165
RIOSTAT, 173
SET_TOD, 177
WORD_AS_BYTE_DFB, 181
WORD_TO_BIT_DFB, 183
WRITEREG, 187

configuration
differences, 22
33002515 02/2017
conversion errors, 221
conversion wizard for Concept), 17
converter, 13
convertion

procedure, 103
process, 101

CREADREG, 117
CWRITREG, 125

D
DINT_AS_WORD_DFB, 131
DIOSTAT, 133
direct address

E1163, 219

E
E1163

direct address, 219
EFBs

differences, 31
EN

not connected, 91
error messages, 51, 87, 101, 106
exporting

DFBs, 104
macros, 104
projects, 15, 104
sections, 104

F
Function Block Diagram

differences, 50

G
GET_TOD, 135
227

Index
H
hardware

correspondences, 21
hardware platforms

supported, 21

I
importing

DDTs, 106
macros, 51, 108
projects, 15, 105

initialization values
array, 109
cluster, 109
LL_SRAMxxx, 109

Instruction List
differences, 47

instructions
differences, 31

L
Ladder Diagram

differences, 35
Ladder Logic

differences, 49
language objects, 51

differences, 23
LIMIT_IND_DFB, 139
LL_SRAMxxx

array, 109
initialization values, 109

LOOKUP_TABLE1_DFB, 143

N
not configured

address, 220

O
object types

differences, 51
228
P
PLCSTAT, 149
preconditions, 19
program execution

differences, 23

R
READREG, 165
requirements, 19
RIOSTAT, 173

S
Sequential Function Chart

differences, 34
SET_TOD, 177
Structured Text

differences, 47
system objects

differences, 23

W
WORD_AS_BYTE_DFB, 181
WORD_TO_BIT_DFB, 183
WRITEREG, 187
33002515 02/2017

	Unity Pro
	Table of Contents
	Safety Information
	About the Book
	Requirements and conversion
	General Description of the Unity Pro Concept Converter
	General Description
	Conversion with the Conversion Wizard

	Requirements
	Concept Version
	Supported Hardware Platforms
	Configuration
	System
	EFBs
	Programming Language SFC
	Programming Language LD
	Programming Language ST/IL
	Programming Language LL984
	Programming Language FBD

	Language Differences
	Functions Not Present in Unity
	EFB Replaced by Function
	FFBs Not Available For All Platforms
	INOUT Parameters
	Parameter Type Changed
	ANY_ARRAY_WORD Parameters
	Unique Naming required
	Incomplete LD Generation
	LD Execution Order Changed
	Constants
	Indices in ST and IL
	Calculate with TIME and REAL
	WORD Assignments to BOOL Arrays
	Topological Address Overlapping
	Substitute %QD by %MF
	Structure Alignment Changed
	Undefined Output on Disabled EFs
	Variables at Empty Pins
	The set action remains active, even when the associated step becomes inactive
	SFC Section Retains its State When Performing an Online Modification
	SFCCNTRL Function Block in Unity Behaves Different to Concept
	Weekday Numbering
	System Timer
	Initial Values
	Macros

	Possible application behavior change
	General
	Concept Behavior
	IEC Demands
	Unity Behavior
	Consequences

	The Conversion Process
	Conversion Process

	Conversion Procedure
	Exporting a Project from Concept
	Importing a Project into Unity Pro
	Missing Datatypes at the Beginning of the Import
	Converting Only Parts of a Concept Application
	Removing Accidentally Included Concept Macros
	Initialization Values
	If the convertedMomentum application contain more than one XMIT block

	Blocks from Concept to Unity Pro
	BYTE_TO_BIT_DFB: Type conversion
	Description

	CREADREG: Continuous register reading
	Description
	Mode of Functioning
	Parameter description
	Modbus Plus Error Codes

	CWRITREG: Continuous register writing
	Description
	Mode of Functioning
	Parameter description

	DINT_AS_WORD_DFB: Type conversion
	Description

	DIOSTAT: Module function status (DIO)
	Description

	GET_TOD: Reading the hardware clock (Time Of Day)
	Description

	LIMIT_IND_DFB: Limit with indicator
	Description

	LOOKUP_TABLE1_DFB: Traverse progression with 1st degree interpolation
	Description
	Detailed description

	PLCSTAT: PLC function status
	Description
	Derived Data Types
	PLC status (PLC_STAT)
	RIO status (RIO_STAT) for Quantum
	DIO status (DIO_STAT)

	READREG: Read register
	Description
	Mode of Functioning
	Parameter description

	RIOSTAT: Module function status (RIO)
	Description

	SET_TOD: Setting the hardware clock (Time Of Day)
	Description

	WORD_AS_BYTE_DFB: Type conversion
	Description

	WORD_TO_BIT_DFB: Type conversion
	Description

	WRITEREG: Write register
	Description
	Mode of Functioning
	Parameter description

	Appendices
	FAQ Build Errors
	General
	Object Link Creation Error
	Object Must be Connected to a Successor
	Link Together with Variable isn't Allowed
	Data Type 'xxxx' Expected
	Empty DFB to Replace Obsolete EFB
	Undefined Symbol 'xxxx'
	Call of Non-Function Block
	Parameter 'xxxx' Has to Be Assigned
	' xxxx' Is Not a Parameter of 'yyyy'
	DDT Component Is Missing
	EHC Parameters Out of Range
	Not a Valid Address
	140 NOG 111 00 Configuration Not Converted
	E1163 Use of Unconfigured Direct Address
	The Instance Is Located on an Address That Is Not Configured

	FAQ Conversion Errors
	FAQ Conversion Errors

	Index

